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SYMBOLS

ABS or | | absolute value

CA cycles-averaged

E[] expected value

G1 gain for transfer-matrix variation

G2 gain for constant noise input

G3 gain for random noise input

g measure of acceleration, 9.81 m/sec2

HHC higher harmonic control

I  identity matrix

i indicates row of tensor or row dimension of a matrix

JID quadratic identification index

JP quadratic performance index

JZ measured vibration index

JZ0 uncontrolled vibration index

Jθ total HHC pitch index

j indicates column of tensor or column dimension of a matrix

K S LMS and generalized LMS stability gain matrix (i x i)

K Si diagonal element of KS, scalar

k discrete computation step index

LMS least-mean-squares

LSE least-square-error

M initial process-noise covariance matrix (j x j)



viii

Mi M for ith row of Ti (j x j)

N number of rotor blades

NT number of elements in T matrix

n number of measurements; multi-step batch size

P process-noise covariance matrix computed after measurement (j x j)

Pi P for ith row of T i (j x j)

Q Kalman filter probing noise matrix (j x j)

R measurement-noise covariance matrix, (n x n)

r measurement-noise covariance, scalar

ri measurement-noise covariance for ith row of T, scalar

T local or global transfer matrix (i x j)

TGlobal global transfer matrix (i x j+1)

TID  identified transfer matrix (i x j)

Ti ith row of transfer matrix (1 x j)

TLocal local transfer matrix (i x j)

TNS invariant-noise matrix (i x j)

TNUS random-noise matrix (i x j)

TTrue  true transfer matrix (i x j)

T0 base transfer matrix (i x j)

W WLSE diagonal-weighting matrix (n x n)

WGLMS GLMS diagonal-weighting matrix (n x n)

WZ diagonal vibration-weighting matrix (i x i)

W∆ θ diagonal control-rate weighting matrix (j x j)



ix

Wθ diagonal total control weighting matrix (j x j)

WLSE weighted least-square error

w Kalman filter transfer-matrix process noise, scalar

w(k) measurement error weight for kth measurement

Z vibration measurement matrix (i x n)

Zi ith row of Z matrix (1 x n)

Z1 gain for z0 variation

Z2 z0 phase lag constant

z vibration vector (i x 1)

zDV abrupt changes to z0 (i x k)

zi ith element of vibration vector scalar

zN vibration measurement noise (i x 1)

z0 uncontrolled vibration (i x 1)

α, γ weighting factors for WLSE

φ estimate transition matrix

Γ Kalman filter influence matrix (i x j)

ε error vector, scalar or (1 x n)

εi adaptation error vector (1+ n)

∆z change in vibration vector (i x 1)

∆θ change in HHC pitch vector (j x 1)

Θ HHC block control matrix (j x n)

θ HHC pitch vector (j x 1)



x

θ* repartitioned control vector

λ matrix eigenvalue

Ψ Kalman filter transition matrix (j x j)

ωT rate of transfer-matrix variation

ωZ rate of z0 vibration variation

Superscripts

T transpose

-1 inverse

* estimate

Note: Throughout the text, letters that designate matrices are printed in boldface.
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COMPARISON OF FIVE SYSTEM IDENTIFICATION ALGORITHMS FOR
ROTORCRAFT HIGHER HARMONIC CONTROL

Stephen A. Jacklin

Ames Research Center

SUMMARY

This report presents an analysis and performance comparison of five system-identification
algorithms. The methods are presented in the context of identifying a frequency-domain transfer
matrix for the higher harmonic control (HHC) of helicopter vibration. The five system-
identification algorithms include three previously proposed methods: (1) the weighted-least-
squares-error approach (in moving-block format), (2) the Kalman filter method, and (3) the least-
mean-squares (LMS) filter method. In addition there are two new ones: (4) a generalized Kalman
filter method and (5) a generalized LMS filter method. The generalized Kalman filter method and
the generalized LMS filter method were derived as extensions of the classic methods to permit
identification by using more than one measurement per identification cycle. Simulation results are
presented for conditions ranging from the ideal case of a stationary transfer matrix and no
measurement noise to the more complex cases involving both measurement noise and transfer-
matrix variation. Both open-loop identification and closed-loop identification were simulated.
Closed-loop mode identification was more challenging than open-loop identification because of
the decreasing signal-to-noise ratio as the vibration became reduced. The closed-loop simulation
considered both local-model identification, with measured vibration feedback and global-model
identification with feedback of the identified uncontrolled vibration. The algorithms were
evaluated in terms of their accuracy, stability, convergence properties, computation speeds, and
relative ease of implementation. With the exception of the weighted-least-squares-error technique,
all of the identification methods were found to be suitable for on-line system identification, and all
were found to produce about the same amount of identification error in closed-loop operation.
However, the algorithms clearly differed with respect to their formulation, ease of implementation,
and computational speed. The single-step LMS filter was not only computationally the fastest
identification method, but was also the easiest to implement because it required the specification of
only one tuning parameter. Although the generalized LMS filter implemented with a batch size of
4 was slower than the single-step version, it also produced somewhat superior identification
accuracy. The generalized Kalman filter, though not as fast nor as easy to tune as the LMS
methods, produced the lowest system identification error using a batch size of 4 with the local
model. Neither the elimination of a recursive equation in the generalized Kalman filter formulation
nor the reduction of tuning parameters by the LMS and generalized LMS formulations was seen to
impair identification accuracy when compared to the classic Kalman filter.
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1. INTRODUCTION

In forward flight, asymmetrical airflow through the helicopter rotor causes large vibratory
forces and moments to be generated on the rotor blades. The blade loads may be additionally
affected by the presence of rotor blade stall, shock waves (compressibility effects), or by the blades
striking the trailed vortices of other blades at one or more places around the rotor azimuth (fig. 1).
For an N-bladed rotor, these harmonic air loads produce large oscillatory blade-root shear forces
and bending moments which are experienced as N-per-revolution (N/rev) vibration in the fuselage
reference frame. This vibration degrades the ride quality of the helicopter and shortens the life of
critical rotor hardware.

Trailed
blade
vortex

Blade
stall

Tail rotor-wake
interference

effects

BVI noise

Ω

Compressibility
effects/shock

waves

Figure 1. Origin of rotorcraft N/rev air loads and vibration.



3

Since passive vibration control methods (such as pendulum absorber and modal placement
methods) have not been totally successful (ref. 1), active control methods have been proposed to
help alleviate the helicopter vibration problem. The most widely studied method is the higher
harmonic control (HHC) technique whereby the rotor blades are oscillated at the N/rev frequency
to cancel the vibration at its source. In this approach, accelerometers can be used to measure the
fuselage vibration while suitable swashplate actuators can be used to induce the N/rev blade-pitch
commands. Figure 2 illustrates the basic HHC vibration control-loop. To implement this control
scheme, however, it is necessary to know the manner in which the N/rev blade-pitch inputs
influence the N/rev components of vibration.

S1
C1
S2
C2
•
•
•
•

Sn
Cn

Sin N ψ
Cos N ψ

• WLSE
• LMS
• Kalman filters
• GLMS
• GKF

Vibration
metric

∆z

Control
vector

∆θ

Identification
methods

Deterministic
controller

Swash plate
actuators

T*
θN + 1, S
θN + 1, C
θN, S
θN, C
θN – 1, S
θN – 1, C

FFT of
acceleration

Figure 2. Helicopter vibration control loop.

Early work in achieving this understanding focused primarily on seeking a simple set of HHC
input amplitudes and phases that would allow reduction of the vibration throughout the flight
regime of the helicopter. Stewart (ref. 2) proposed the application of 2/rev control inputs to delay
the onset of retreating-blade stall. The method was extended to include 3/rev input by Arcidiacono
(ref. 3) in 1961, and then flight tested on a UH-1A, two-bladed, teetering rotor. This test showed
that the 2/rev input had a marked effect on rotor vibration (ref. 4). Nearly a decade later, Sissingh
and Donham (ref. 5) and McCloud and Kretz (ref. 6) applied HHC to four-bladed rotors. Sissingh
and Donham showed that HHC could suppress the blade flap-bending oscillatory loads, while
McCloud and Kretz, using a jet-flap rotor, showed that substantial fuselage vibration reduction
could be achieved by using HHC. Moreover, McCloud also calculated a set of influence
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coefficients which attempted to relate the effects of harmonic control input on the harmonics of
measured vibration. This originated the idea of the transfer-matrix model.

In 1975, McCloud further advanced the idea of a transfer matrix relating the harmonics of
control input to the harmonics of measured vibration for a four-bladed, articulated, controllable-
twist rotor (ref. 7). This transfer matrix was used to determine the HHC input magnitudes and
phases required to minimize the sum of the squares of the vibratory loads. When tested full-scale
in two wind tunnel tests, it was shown that HHC could substantially reduce the rotor-blade bending
loads (McCloud and Weisbrich (ref. 8)), as well as the N/rev vibration at fuselage (test stand)
stations instrumented with accelerometers (Brown and McCloud (ref. 9)). This work clearly
established the validity of using a linear transfer matrix to relate the harmonics of HHC input to the
harmonics of measured vibration output. However, at the same time, this work also showed that
the transfer matrix was not invariant with airspeed, but rather was strongly dependent on the flight
conditions. This finding was subsequently confirmed by Shaw and Albion (ref. 10) using a model-
scale, four-bladed, hingeless rotor.

Shaw and Albion also demonstrated the feasibility of designing a closed-loop, HHC vibration
control system based on using a transfer matrix in a deterministic control law (discussed in sec.
5.3). To be effective at several flight speeds, however, a way had to be found to adapt or re-
identify the transfer-matrix elements with each flight condition. For this purpose, Shaw decided to
use a Kalman filter which proved to be successful in low-speed flight. In a later work however,
testing HHC on a three-bladed, small-scale CH47D rotor, Shaw achieved the same vibration
reduction performance (up to 90% reduction) using transfer matrices identified off-line. In this
approach, separate transfer matrices were identified at each flight condition off-line, and then
subsequently used in the controller (ref. 11). This approach was preferred over the Kalman filter,
which sometimes had difficulties. Indeed, several other researchers of HHC also reported similar
problems when using the classic Kalman filter system identification method (refs. 12–18).

The classic Kalman filter approach, which many believe to be the best on-line method of
system identification, performs the system identification using only the most recent measurement
to update the estimate of the identified parameters (or transfer matrix). This makes the Kalman
filter computationally efficient. The difficulty in using the classic Kalman filter, however, is that
the statistical information needed to implement the filter is often poorly known. For example, exact
knowledge of the vibration measurement-noise spectrum and error covariance is required. If not
tuned correctly, the Kalman filter may not be able to distinguish errors in the measurements from
true changes in the parameters, leading to either unresponsive identification performance or a
display of stability and convergence problems. These problems motivate the search for alternative
system-identification algorithms which can produce near optimal Kalman filter identification
accuracy, yet are more easily implemented and less prone to the destabilizing effects of
measurement noise and un-modeled dynamic behavior.

With this goal in mind, this report seeks to compare the identification performance of four
other system identification methods with that of the classic Kalman filter. These algorithms are the
weighted-least-squares method in moving-block format, the generalized Kalman filter method, the
least-mean-square (LMS) filter method, and generalized LMS filter methods. These algorithms
differ from the classic Kalman filter method in that they place less reliance on user-supplied tuning
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information than the classic Kalman filter method or in that they are computationally more
efficient. In fact, the LMS filter method is a single-step identification technique which resembles
the Kalman filter method in some ways, but is considerably less complex in its implementation.

The order of the report is as follows. After a brief description of the helicopter system-
identification problem for HHC, a detailed description and derivation of each of the five system-
identification methods is presented. Then the computer program used to simulate the identification
methods is briefly described, and the computational efficiencies of the identification methods are
compared. After that, the open-loop and closed-loop identification performance results are
presented. The closed-loop simulation considered both local-model identification with measured
vibration feedback and global-model identification with feedback of the identified uncontrolled
vibration. Last, some comparisons between the methods are made and the conclusions are
presented.

Note that throughout the text, letters designating matrices are printed in boldface.

2. SYSTEM IDENTIFICATION MODELS

Adopting the transfer-matrix modeling approach, the relationship between the HHC control
input harmonics and the harmonics of vibration output can be linearly expressed as

z zk k o= +Tθ  (1)

In this representation, zk is an (i x 1) vector representing the sine and cosine harmonics of vibration
at step k, θk is a (j x 1) vector representing the sine and cosine harmonics of N/rev blade-pitch
control at step k, and T  is the (i x j) transfer matrix relating the harmonics of vibration to the
harmonics of control. The vibration vector, z, could represent the N/rev sine and cosine
accelerations measured by i/2 fuselage accelerometers. Since most helicopter swashplates are
controlled using three actuators in the fixed-system, the dimension of j is usually 6. Equation (1) is
referred to as the global model of helicopter harmonic vibration. Note that the baseline vibration
present with no HHC control (θ = 0) is therefore zo.

 An alternative representation is to model the relationship linearly in a local region about the
current conditions. If equation (1) is applied to two successive simulation steps, namely k and k-1,
two equations are formed,

z  z

z  z

k k o

k 1 k 1 o

= +

= +− −

T

T

θ

θ

which, if subtracted from each other yield the local-model representation as

∆ ∆z  = T θ  (2)
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where the changes in vibration, ∆z, and the changes in control, ∆θ, are computed for simulation
step k as

∆

∆

z z zk k 1

k k 1

= −

= −

−

−θ θ θ  (3)

Using either model, the identification problem is to determine the coefficients of the transfer
matrix, given knowledge of the control inputs and measured vibration outputs. Since the transfer
matrix will typically vary with the helicopter operating conditions (e.g., thrust, airspeed), the
methods used for transfer-matrix identification should be “on-line” methods which can track or
estimate the transfer matrix based on the information contained in the most recent control inputs
and vibration outputs.

Given knowledge of the transfer matrix, it is possible to compute a minimum-variance control
law of the type described in section 5.3 below. When using the local modeling, the identified
transfer matrix and measured vibration are used in the control law to calculate the optimal change
in control needed to cancel the measured vibration. Using equation (2), the optimal change in
control is computed as

∆θOPT
-1z= −T  (4)

since the change in vibration desired is the opposite of the amount of remaining measured
vibration z. Note that in this nomenclature, T -1 is regarded as a pseudo-inverse, since T  is not
required to be a square matrix. If the global modeling is used, the identification routine is also used
to identify the uncontrolled vibration, z0. Using equation (1) to cancel the vibration (i.e., make z =
0),

θOPT
-1

oz= −T  (5)

Therefore, it can be seen that if the transfer matrices defined by equations (1) or (2) exist,
computing the optimal vibration controls is a relatively simple matter after the transfer matrices
have been identified.

3. ANALYSIS OF IDENTIFICATION ALGORITHMS

This section presents an analysis of the five identification algorithms. Through analysis, the
important limitations of the methods can be more fully understood. Of central importance is a
review of the underlying assumptions concerning the stochastic environment in which each
method is designed to operate.
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The following analyses for each of the five identification methods are presented in terms of the
local-model notation. The derivations, however, are exactly the same for the global model because
equations (1) and (2) can be transformed into the same equation form. This is easily seen by
rewriting these equations in matrix form and using partitioned matrices and vectors for the global
model. If that is done, then the global model (z = Tθ + z0) can be written as

  

z

z

z

z

1

i

11 1j

i1 ij

o1

oi

j

M

M

K K

M O M

M O M

K K

M


















=







































−−

T T

T T

|

|

|

|

θ

θ

1

1  (6)

and the local model can be written as

  

∆

∆

∆

∆

z

z

1

i

11 1j

i1 ij j

M

M

K K

M O M

M O M

K K

M

M



















=





































T T

T T

θ

θ

1

(7)

Equations (6) and (7) are of the same form and are equivalent mathematical expressions of
equations (1) and (2), respectively, assuming that the system is truly linear. The only difference is
that the global model (eq. (6)) requires that a “1” be appended onto the control vector so that the
last column of the identified transfer matrix represents the uncontrolled vibration. In actual
application, however, nonlinearities in the plant dynamics cause these models to differ. They are
only truly equivalent for the case of a time-invariant linear system.

3.1 Weighted-Least-Squares-Error Method

The technique of ordinary least squares has been around as long as the concept of
identification. It was independently formulated by Legendre and Gauss in the early 1800s to
identify constant parameters in the presence of measurement noise. Today, nearly all methods of
parameter identification, whether off-line or on-line, stem from this important technique. This
method assumes that a batch, or set of command inputs and response outputs, is available at the
start of the calculation. The method makes no assumptions other than that the measurement errors
have a normal distribution about the mean (i.e., broadband measurement noise). The batch size
must be no less than the number of parameters (per row) to be identified, and may be made larger
to reduce the effects of measurement noise on the identification process. The method is non-
recursive and is therefore always convergent, provided that the plant excitation commands used in
the identification are always linearly independent.

In order to adapt the weighted-least-squares-error (WLSE) method to the helicopter on-line
system identification problem, the calculations must be limited to a history of the number of the
most recent control commands and vibration measurements (n). Then the excitation commands and
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corresponding response measurements can be grouped into block matrices. Using the local-model
representation, these block matrices are

  

Θ = −
















∆ ∆ ∆ ∆
M

M

M

K

M

M

M

M

M

θ θ θ θ( ), ( ),, ,, ( ), ( )1 2 1n n

 (8)

  

Z = −
















∆ ∆ ∆ ∆
M

M

M

K

M

M

M

M

M

z z z n z n)( ), ( ),, ,, ( ), (1 2 1

 (9)

In this context, the ∆θ() terms represent the changes to the (j x 1) input control commands, the

∆z() terms represent the corresponding changes to the (i x 1) vibration outputs, and n is the number
of measurements in the batch. The identification problem is to identify T  given knowledge of Z
and Θ.

The approach used by the WLSE method (and basically by all other identification methods) is
to find an estimate of T which minimizes the errors produced between the measured output and the
output predicted using the estimate of T and the input. This error can be expressed for each row of
the transfer matrix as

ε i i i= −Z TΘ  (10)

 (1 x n) = (1 x n) - (1 x j)(j x n)

where εi is the error and T i is any row of the transfer matrix. (Note well: z(1) is a column vector
denoting the first measurement over all output channels or, equivalently, the first column of Z.
However, Z1 is a (1 x n) row vector denoting the n measurements from channel 1 or, equivalently,
row 1 of the Z  matrix.) As the name implies, the approach used by the WLSE method is to
minimize the weighted sum of the squares of the errors for the inputs and outputs used in the
calculation batch. (The error is raised to an even power so that positive and negative errors are
treated uniformly.) By taking the weighted dot product of the error vector, a scalar identification
index, JID, can be formed as

J W

J Z T W Z T

J Z WZ Z W T T WZ T W T

ID

ID

ID

=

= − −

= − − +

ε εi i
T

i i i i
T

i i
T

i
T

i
T

i i
T

i
T

i
T

( ) ( )Θ Θ

Θ Θ Θ Θ  (11)



9

where W  is an (n x n) diagonal weighting matrix. As will be seen in comparison to the other
system identification methods, this type of quadratic error equation is common to all the other
methods of system identification presented in this report.

To find the value of T i which minimizes the quadratic performance index of equation (11), the
partial derivative with respect to T i is computed,

∂
∂
J
T

WZ W TID

i
i
T T

i
T= − +2 2Θ Θ Θ

 (12)

Setting this partial derivative equal to zero (to find the minimum), the WLSE estimate of T i is

T Z W Wi i
T T= −Θ Θ Θ( ) 1

 (13)

 (1 x j) = (1 x n)(n x n)(n x j) [ (j x n)(n x n)(n x j) ]-1

This linear equation is the weighted-least-squares estimate of the transfer-matrix row. Note that if
the performance index had been quartic, ε4, the derivative would have been cubic. The difficulty of
handling a cubic identification law (with three minimas possible) is why the least squares-approach
is so convenient for analysis.

It follows from equation (13) that the WLSE estimate for the entire transfer matrix can be
formed as

T ZW W= −Θ Θ ΘT T( ) 1
 (14)

(i x j) = (i x n)(n x n)(n x j) [ (j x n)(n x n)(n x j) ]-1

where the weighting matrix W  is the same for all measurement channels. (Note that a different
weighting matrix for each input channel could be accommodated by applying equation (13) for
each row of the transfer matrix.) For ordinary least squares, W  is an identity matrix. Then
identification errors at all steps are counted equally in the optimization process. As n becomes
larger, the effect of equal weighting at each time-step is to average out white or wideband
measurement noise.

However, it often arises that variations in the system parameters over time create a situation in
which the more recent measurements will better reflect the true system state. For example, the
helicopter air speed may suddenly change. In that case, the identification performance may be
improved by placing greater weight on the more recent measurements. It has been shown (refs. 19,
20) that the optimal weighting matrix is the inverse of the measurement-noise covariance matrix.
For measurement noise with a normal distribution, this choice of weighting produces the well-
known maximum likelihood or best linear unbiased estimate. In general, however, the values of the
measurement-noise covariance matrix (see eq. (18) for the scalar definition) are unknown because
the system transfer matrix is unavailable for use in the computational process.
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A more convenient method of weight selection is presented in reference 19, where the weights
for the diagonal elements of W, w(k), are generated as

w(k) (n k)= < <−αγ γ0 1
 (15)

where n is the number of measurements in the batch and k denotes a specific measurement in the
batch for which k = n is the most recent measurement. If γ = 1 and α  = 1, the weighting matrix is

the identity matrix. As γ is reduced, less weight is placed on the least recent measurements. One

consideration governing how far γ should be reduced is that smaller values will tend to amplify the
effects of measurement noise on the most recent measurements by making the batch size
effectively smaller.

It should be noted that equation (14) has certain limitations. First, the calculation batch size n
must be larger than the row dimension of T (or larger than the number of elements in the control
vector). Second, the weighted control-covariance matrix, [Θ W ΘT] must not have a lower rank

than the number of elements in the control vector θ. If that happens, the control covariance matrix
becomes singular, and the inversion cannot be performed. This situation arises when the control
vectors within the covariance matrix are redundant or linearly dependent. Of course, this problem
is easily avoided in open-loop identification by selecting excitation commands randomly.
However, for closed-loop control, when the commands are selected to minimize the (vibration)
response vector, avoidance of this problem is not easy. If the controller should calculate nearly the
same control input from one cycle to the next (as should happen about the steady-state optimal
input), the control covariance matrix will tend toward singularity, and the identification accuracy
will degrade as the singularity worsens.

A good way to avoid the singularity problem is a subject of debate. The most obvious
possibility would be to ignore the singularity problem altogether and allow the identification
process to produce an improper transfer matrix. The control based on the resulting erroneous
estimate would then serve to automatically generate a perturbation excitation signal. However,
steady-state controller performance would likely be erratic. Another solution would be to prevent
the control commands from ever becoming linearly dependent by constantly introducing a random
perturbation component to the control signal. This would also degrade steady-state control
performance, but might make the controller behavior less erratic. A third solution might be to shut
off the identification process during periods when the changes in control are sufficiently small. The
merits of each approach were evaluated through simulation.

3.2 Classic Kalman Filter Method

Though identification by the WLSE method is relatively easy to implement and to understand,
its calculation batch size limits its ability to identify rapidly changing variables. This provides the
motivation to find faster identification algorithms that have fewer computations and that use fewer
measurements. The Kalman filter method is perhaps the most widely known and accepted method
of a class of computationally efficient algorithms designed to update parameter estimates on the
basis of a single measurement. The Kalman filter has been widely used in a number of aerospace
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applications. In fact, many investigators of higher harmonic control concepts have proposed using
the Kalman filter to identify frequency-domain transfer matrices (for example, see refs. 10, 12-14,
16-18, 21). The Kalman filter is derived by converting the least squares algorithm into a recursive
method by accumulating the rank of the first inversion. This solution is referred to as the recursive-
least-squares-estimation method. However, the recursive-least-squares algorithm was not
simulated separately in this study because, as will be shown, it is a special case of the more general
Kalman filter theory.

The computational speed of the Kalman filter results from not computing the values of certain
quantities that define the stochastic identification environment. These values are presumed to be
known. As will be shown below, they include knowledge of starting estimates for the transfer
matrix, the transfer-matrix covariance, the measurement-noise covariance, and the process-noise
covariance. The degree to which this information is actually known is critical in designing the
filter for optimal performance and stability. Usually, however, this information is not readily
available, and the user must use trial and error to find the correct values.

Since the complete derivation of the Kalman filter is well explained by many excellent texts
(refs. 19-22), only the essentials of the derivation process will be outlined here. Derivation of the
Kalman filter begins by assuming that the measurement and process noises have zero (or known
constant) mean values:

E zi( )∆ ∆− =Ti θ 0 (16)

E( i iT T− =*) 0  (17)

respectively, where T i* represents an estimate of the ith transfer-matrix row and E{...} denotes
“expected value.” The associated covariance matrices (also assumed to be known) are represented
by diagonal, positive definite matrices, ri and M i, as

E z z ri i
T

i i i( ) ( )∆ ∆ ∆ ∆− −[ ] =T Tθ θ (18)

E ( iT T T T M− −[ ] =i
T

i i i*) ( *)  (19)

where ri is a scalar which is the measurement-noise variance and M i is the process-noise
covariance matrix. Equations (16) and (17) state that the distributions of measurement and process
noises have a zero mean value. Equations (18) and (19) state that the variance and covariance of
the measurement (18) and process (19) noises are known, assuming a Gaussian distribution of
measurement and process noises. Although obtaining an estimate of the transfer-matrix row T i* is
not difficult (from least squares), evaluation of ri and M i requires operation of the filter to produce
T i. This is troublesome, since ri and M i must be specified to start the filter.

The solution to this dilemma is to guess the correct initial values for ri and M i. This is called
“tuning the filter.” Sometimes, ri and M i can be selected on the basis of some rationale (refs. 14
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and 22 give some), but in most cases guessing is required. This is an awesome task for the
proposed helicopter identification problem, because for a typical (6 × 6) transfer-matrix, 6 values

for ri and 146 values for M i (6 * [6 × 6]) would require specification. (Note that the M i covariance
matrix is symmetric.)

 A sensible alternative commonly employed is to make more assumptions regarding the nature
of ri and M i in order to simplify the tuning problem. One assumption often made is that the M i

matrices are diagonal matrices, whose diagonal elements are all equal. A further assumption is that
the ri and the M i are the same for each row of the transfer-matrix. These assumptions may or may
not be justifiable. However, with these assumptions, the tuning parameter selection problem can be
reduced to a two-parameter selection problem. In the above example with the (6 × 6) transfer
matrix, for example, the 6 + 146 tuning parameters reduce to only two. M i is still a matrix, but with
diagonal form and all the diagonal elements are equal. Its specification is then like choosing a
scalar quantity.

It is very important to note that although these assumptions are convenient, they corrupt the
most basic premises of the Kalman filter theory. The filter is only optimal if the input values for
the measurement- and process-noise covariances (ri and M i) are correct. To see this, consider the
Kalman filter as one minimizing the weighted sum of the process and measurement noises. Like
the least-squares method, this can be expressed as the minimization of a quadratic identification
performance index, JID,

J z r zID i i i i i
T

i i i i
T= − − + − −− −( ) ( ) ( *) ( *)∆ ∆ ∆ ∆T T T T M T Tθ θ1 1

i (20)

where ri 
-1 and M i 

-1 are the optimal weighting parameters. The minimum value of JID occurs when
the partial derivative of JID with respect to T i is zero, or

0 1 1 1 1= − − +− − − −( ) ( ) *T T M T Mi i
T

i i
T

i i i ir z r∆ ∆ ∆ ∆θ θ θ  (21)

It is then possible to arrange the terms in equation (21) to produce an update equation for T i as
follows:

T M T Mi i i
T

i i ir z r( ) *− − − −+ = +1 1 1 1∆ ∆ ∆ ∆θ θ θi
T

or,

T M T M Ti i i
T

i i i
T

i i
Tr z( ) * ( ) ( * )ri

− − − − −+ = + + −1 1 1 1 1∆ ∆ ∆ ∆ ∆ ∆ ∆θ θ θ θ θ θr  (22)

which can be rewritten as

T T T Pi i i i i
T

iz r= + − −* ( * )∆ ∆ ∆θ θ1
(23)
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where, by definition, Pi is

P Mi i i
T( r= +− − −1 1 1∆ ∆θ θ ) (24)

Equations (23) and (24) define a formula for the calculation of T i, given M i and ri.
Unfortunately, equation (24) requires inversion of a (j × j) matrix, which is computationally
troublesome. This can be avoided, however, by using the matrix inversion lemma,

(A BCD) A A B(C DA B) DA1 1 1 1 1 1 1+ = − +− − − − − − −
  (25)

Assigning

A =

B
i
-1

T

M

=

=

=

−

∆

∆

θ

θ

C r

D

i
1

equation (24) may be expressed as

P M M M Mi i i i
T

i
T

ir= − + −∆ ∆ ∆ ∆θ θ θ θ( ) 1
 (26)

which now only requires inversion of a scalar. Equations (23) and (26) are update equations for the
transfer-matrix row identification and may be computed after each new measurement. Equation
(23) shows that the new estimate of the transfer-matrix row is equal to the old estimate plus a
correction term. The correction term is proportional to the error between the change in measured
vibration state ∆zi and the predicted change in vibration state (T i*∆θ), which would be zero, except

for measurement error in ∆zi and identification errors in T i. Since the Kalman filter is designed for
recursive calculation, T i* is usually understood to mean T i at the previous time-step (it is estimated
for the first calculation). Starting values for the (j × j) Pi matrix can be computed from equation
(26) given M i and ri. Note that if Pi is too large at the start or if it becomes too large, the filter will
tend to overcorrect, and the identification performance will be unstable. However, if Pi is too
small, the identification method will not be able to track rapidly changing T i values.

Specification of the Kalman filter method is completed by appending equations that specify the
manner in which the parameter estimates (T i) and the covariance matrix (M i) change between
measurements. Usually, the T i variation is assumed to be a Gauss-Markov process whereby the
value of the parameter estimate at the next step is a function only of the estimate at the current step
and some process noise, or

T Ti i i(k (k) (k)+ = +1) Φ ω  (27)
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where Φ is the estimate transition matrix and ωi is a random variable vector with an expected
value of zero. Then, subtracting the expected transfer-matrix value from both sides of equation
(27) we have,

T T T Ti i i i(k * (k (k) - * (k)+ − + = [ ] +1 1) ) ( )Φ ω i k  (28)

where T i*  is the expected value of T i. From equation (19) it can be seen that an update equation for
the process-noise covariance matrix can be formed by manipulating each side of equation (28) as
follows:

E (k * (k (k * (ki i

T

i iT T T T+ − +[ ] + − +[ ]{ } =1 1 1 1) ) ) )

E ( (k) (k)) k (k) (k kT
i i

T
i
T

i i iΦ Φ[{ − + ] [ − + ]}T T T T* ( ) ( * )) ( )ω ω
 (29)

From which it is obtained directly that

M M Qi i
T

i(k (k)+ = +1) Φ Φ  (30)

where

E (k) (k)i
T

i i[ ]ω ω = Q  (31)

Equation (30) derives directly from equation (29), keeping in mind that the T i and ωi are
uncorrelated so that the expected value of the cross-product terms vanish. In order to use equation
(30), it is necessary to pick values for Φ and Q i, similar to that done for ri and M i above. Again,
this information is assumed to be known to the user, which is rarely the case in general, and
certainly not for the helicopter vibration control problem. Very commonly, Φ is chosen as the
identity matrix and Qi is left variable for algorithm tuning. Exactly analogous to the assumptions
made to simplify the selection of M i, the (j × j) Q i matrix is usually reduced to the selection of a
diagonal matrix whose elements are all the same.

Equations (27) and (30) are to be computed between measurements. In the days of limited on-
line computational resources, it might have been useful to compute the variation in T i and Pi

between measurements. However, with today’s computational power, the time between
measurements is so short that the application of these equations takes on a different purpose. This
is that Qi adds a perturbation to M i to prevent it from ever becoming zero; if that were to happen,
no further identification could take place. Similarly, ωi is a perturbation to T i which serves to add
probing, or a disturbance, to the identification process, desirable to keep the filter from becoming
nonadaptive.
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The Kalman filter equations can be placed into matrix form by assuming that the ri values and
the Qi and M i matrices are the same for all rows of T , and that they are denoted as r, Q, and M,
respectively. Arranged in the order of their computational sequence after measurement, the
Kalman filter equations are then as follows:

P = M M M M* * ( * ) *− + −∆ ∆ ∆ ∆θ θ θ θr T T1

(32)

T T Z T P= + − −* ( * )∆ ∆θ θr T1 (33)

M P Q* = +Φ ΦΤ

(34)

T T* = +Φ ω (35)

These equations represent an optimal filter, given perfect knowledge of r, M , Q, Φ, and ω. In most
applications proposed for higher harmonic control, equation (34) is rewritten as

M P Q* = + (36)

(j x j) = (j x j) + (j x j)

assuming Φ = I and equation (35) is neglected. Equation (32) shows that a small value M *, once
obtained in the steady-state, will cause P to approach zero. This will make the Kalman filter update
in equation (33) zero, and no further improvement of the estimated transfer matrix will take place.
The Q matrix, therefore, serves to keep the P matrix from ever becoming zero. This is the key
strength of the Kalman filter over the recursive least-squares estimation technique. Although that
technique is not explicitly developed in this report, the recursive least-squares solution is a special
case of Kalman filter theory. As shown in reference 19, the recursive least-squares estimate is
obtained by iteratively computing equations (33) and (34) only. Then M * is redefined as P (k+1),
and equations (32), (35), and (36) are omitted.

Equation (33) displays the basic dynamics of the Kalman filter method. The new estimate of
the transfer-matrix T , formed after measurement, is equal to the old estimate plus a correction
term. The correction term is proportional to the error between the change in the measured vibration
state, ∆z, and the change in the vibration state predicted using the estimated value of the vibration,

T*∆θ. As shown by Kalman filter analysis (ref. 19), identification of the unknown transfer matrix

then occurs in the limit of a sufficient number of measurements, assuming that T  and ∆Ζ are
stationary in the mean for as many measurements as are needed to define the expectation values
for r, M , and Q.

The Kalman filter is tuned by making good guesses for the r, M , and Q tuning parameters. If r
and M  are chosen so that P becomes too large, the Kalman filter will become unstable and diverge
the identification process. If chosen such that P becomes too small, the identification process will
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become sluggish. It is also probable that more than one combination of r and M  may produce the
same identification performance. Similarly, if Q is chosen too small, the filter might not be able to
adjust to new conditions, and if chosen too large, may degrade steady-state performance.
Moreover, the highly coupled nature of equations (33) through (36) implies that the filter
performance will not be linear with regard to the selection of the tuning parameters.

3.3 Classic Least-Mean-Squares Filter Method

The least-mean-squares (LMS) filter method is a single-step identification technique which
resembles the Kalman filter, yet is considerably less complex in its implementation. The simplicity
of this algorithm derives from the manner in which it is formulated. The LMS filter was developed
by Widrow and Hoff (ref. 23) and Widrow (ref. 24), for multiple-input, single-output systems; it
was later applied to the multiple-input, multiple-output rotorcraft identification problem in
reference 25.

An obvious problem with the Kalman filter method is that the information needed to assign
initial values for r, M , and Q is usually unavailable. Although good estimates can sometimes be
experimentally determined for some applications, in many instances a lack of information requires
that the initial values be assigned by guessing. When the filter does not perform correctly (as it
usually will not at first), there is no good rationale for deciding how the tuning parameters should
be adjusted; that takes some trial and error.

In the LMS approach to system identification, this tuning difficulty is circumvented by
modeling the identification process in a more direct manner. Both the Kalman and LMS filters
require a starting estimate for the transfer matrix, T. However, whereas the Kalman filter forms an
update equation for T assuming knowledge of r, M , and Q, the LMS approach begins by assuming
that corrections to the estimate should be made proportional to the square of the identification
error. This identification process is referred to by Widrow (ref. 24) as the steepest descent
approach and is motivated by equation (33) of the Kalman filter. A useful mental image of the
steepest descent approach for a one-dimensional system is shown in figure 3. In that figure, the
estimate of the parameter x is plotted on the horizontal axis and the square of the corresponding
identification error ε is plotted on the vertical axis to form a bucket-shaped curve about the value
of x having the minimum identification error. It can be seen that given the slope of the
identification error about any arbitrary starting value of x, the amount of correction to be made to
the estimate is proportional to the slope of the identification error and in the opposite direction, or

x(k 1) x(k)
x

+ = − 





K
∂ε
∂

2

(37)

This states that the correction to the estimate of x is proportional and opposite to the gradient of the
squared identification error, ε2, with respect to x. The identification problem is now to find a good
value for K  and the gradient. If K  is too large, the identification process may become divergent,
and if too small, it may produce very slow convergence.
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Figure 3. One-dimensional view of LMS gradient.

Equation (37) may be rewritten in terms of the helicopter transfer-matrix identification problem
by forming an identification error for each row of the transfer matrix as

ε θi = −[ ]∆ ∆z (k) (k ki iT ) ( )  (38)

where, as before, T i is a row of the transfer matrix relating the change in the control inputs ∆θ to
the change in the ith vibration component output. (Henceforth the digital step indicator k will be
assumed and not explicitly written.) The square of the identification error is therefore,

ε ε εi
2

i i
T= (39)

ε θ θi
2

i i i i
Tz= − −( )( )∆ ∆ ∆ ∆T Tz  (40)

ε θ θ θ θi
2

i i
T

i
T

i
T

i i
T

i
T

i
Tz z z z= − − +∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆T T T T  (41)

Since ∆zi is a scalar, differentiation of equation (41) with respect to the transfer-matrix row
produces an expression for the error gradient

∂ε
∂

θ θ
2

2
T

T
i

i i
Tz= − −( )∆ ∆ ∆

(42)
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Substituting equation (42) into equation (37) and substituting Ti for x produces

T T Ti i i i i
T(k 1) (k) 2k z (k) (k (k (k+ = + −[ ]∆ ∆ ∆) ) )θ θ  (43)

(1 x j) = (1 x j) + (1)(1) [ (1) - (1 x j)(j x 1) ] (1 x j)

which is a remarkably computationally efficient algorithm for recursive identification of T i. This
can also be written in matrix form:

T T K T(k 1) (k) 2 z(k) (k (k (kT+ = + −[ ]∆ ∆ ∆) ) )θ θ  (44)

(i x j) = (i x j) + (1)(i x i) [ (i x 1) - (i x j)(j x 1) ] (1 x j)

in which K  is a diagonal matrix of the corresponding ki coefficients. Equation (44) is the LMS
filter for system identification. It is like equation (33) of the Kalman filter, with the [r]-1∆θTP gains

term replaced with 2K∆θT. Unlike the usual Kalman filter simplifications that M  and Q are
diagonal matrices, K  is diagonal from its derivation. Compared to the full Kalman filter equations,
the LMS method is very elegant and computationally efficient. At the same time, however, it
should also be noted that the simplicity of the LMS algorithm (compared to the Kalman filter) is
achieved at the expense of not using any knowledge about the theoretical quality of the estimate. In
fact, no apriori knowledge was required in the formulation. This makes the LMS filter more
computationally robust than the Kalman filter, but does not take advantage of any good
information describing the stochastic nature of the system, if available.

To analyze the convergence properties of the LMS filter, the expected value of equation (44) is
taken as

E k E k E z k k E k k kT TT T K K T( ) ( )+ 2+ = −[ ] [ ]1 2∆ ∆ ∆ ∆( ) ( ) ( ) ( ) ( )θ θ θ
(45)

Then, by defining

E z(k k)T
z∆ ∆ ∆ ∆) (θ θ[ ] = Φ (46)

E z(k k)T∆ ∆ ∆ ∆) (θ θ θ[ ] = Φ (47)

equation (45) may be rewritten

E (k +1) E (k E kzT T K K T[ ] = + −) ( ), ,2 2Φ Φ∆ ∆ ∆ ∆θ θ θ  (48)
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E (k 1) E (k)(IT T K K+[ ] = − +2 2Φ Φ∆ ∆ ∆ ∆θ θ θ, ,) z (49)

From equation (49) it can be seen that as long as the absolute values of the eigenvalues of
[I-2KΦ∆θ,∆θ] are less than 1, the algorithm is stable. Thus, the theoretical stability range for the ki

gain elements is

0 1< <ki / maxλ

where λmax is the largest eigenvalue of the control information matrix Φ∆θ,∆θ. Values of ki near

1/λmax will cause rapid adaptation, but will also be more prone to tracking random noise
disturbances. Good values for the ki are ones that result in convergence at a sufficiently rapid rate,
yet do not track noise signals too closely.

Although the above analysis provides some insight into the selection of elements for K , it
should be noted that Φ∆θ,∆θ is unknown for the general case of closed-loop identification. In order

to determine it, the control commands at all future time-steps would need to be known, which is, of
course, only possible for open-loop control. Therefore, in closed-loop, the selection of terms for K
is a matter of guessing. Nevertheless, this is a vast simplification over the Kalman filter method.
Whereas the Kalman filter method required selection of r, M , and Q , only K  is required to
implement the LMS filter. This means the parameters in K  can be adjusted without regard to the
effect on other tuning parameters, making the tuning task much less difficult.

Further tuning ease could be gained by assuming that the diagonal elements of K (the ki’s) are
all the same. This choice would make tuning very simple. However, the filter would become non-
optimal since ki would be limited by the largest eigenvalue of Φ∆θ,∆θ.

3.4 Generalized Kalman Filter Method

In this section, an extension of the classic Kalman filter is presented which is referred to as the
generalized or multi-step Kalman filter method. This algorithm uses more than the most recent
measurement (and control) so that less reliance is placed on user-supplied tuning information,
which may be only poorly known.

In the derivation of the generalized Kalman filter method, it is assumed that the last n control
command and measurement vectors are available in computer memory. As was done for the
weighted-least-squares method, these controls and measurements are grouped into the Φ and Z
block matrices defined by equations (8) and (9). Then for each row of the parameter matrix to be
identified, T i and each row in the measurement matrix, Z i, the process and measurement noises are
defined in a manner directly analogous to that of the classic Kalman filter, as

E( i iZ T− =Θ) 0  (50)
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E i i i i i(Z T (Z T R− −[ ] =Θ) Θ)Τ
 (51)

E( *) = 0i iT T− (52)

E ( ) ( * )i i
T

i i[ − − ] =T T T T M* i (53)

As for the classic version, these equations state that the means of the measurement and process
noises are zero and that the covariance matrices are known. However, Ri is an (n × n) matrix to

take into account n measurements in Z i and n controls in Θ. The generalized Kalman filter estimate
of T i is defined as the one that minimizes the quadratic identification performance index JID,

JID i i i i i
T

i i i i i
T= − − + − −− −( ( ( * ( *)Z T R Z T T T M T TΘ Θ) )1 1

 (54)

where Ri
-1 and M i

-1 are the optimal weighting parameters. For a minimum of this performance
index to exist, the partial derivative of JID with respect to the row estimate T i must be zero.
Applying this condition to equation (54) gives

0 = i i
T

i i
T

i i i iT R Z R T M TMΘ Θ Θ− − − −− − +1 1 1 1*  (55)

From which it follows that

T M R T M Z R

T M R T M R

Z T R

i i i
T

i i
1

i i
T

i i i
T

i i
1

i
T

i i i
T

( *

( * (

− − − −

− − − −

−

+ = +

+ = +

+ −

1 1 1

1 1 1

1

Θ Θ Θ

Θ Θ Θ Θ

Θ Θ

)

) )

( * )  (56)

T T Z T )R Pi i i i i
1 T* +( - *= −Θ Θ i (57)

(1 x j) = (1 x j) + [ (1 x n) - (1 x j)(j x n)] [n x n] (n x j)(j x j)

where Pi is defined as

P R )i i i
T= (Μ + Θ Θ− − −1 1 1

 (58)

(j x j) = [(j x j) + (j x n)(n x n)(n x j) ]-1

Equations (57) and (58) define the generalized Kalman filter equations to be computed for each
row of the transfer matrix. To place these in a convenient matrix formulation requires the
assumption that the Ri and M i matrices are the same for all rows of the transfer matrix. These are
the same assumptions made for tuning the classic Kalman filter. Though they may not be valid,
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they are necessary to make the tuning problem tractable. In matrix form, the equations for the
generalized Kalman filter are

T T Z T )R P= −* +( - * 1 TΘ Θ  (59)

(i x j) = (i x j) + [ (i x n) - (i x j)(j x n) ] (n x n) (n x j)(j x j)

P = (M + R )-1− −1 1Θ ΘT
(60)

(j x j) = [(j x j) + (j x n) (n x n) (n x j) ]-1

where R and M  are specified to be diagonal matrices having their respective diagonal terms equal
(i.e., R = rIn; M = mIj; where r and m are scalars). These equations bear strong resemblance to the
ordinary Kalman filter, but are fewer in number and do not recursively propagate the covariance
matrix. Unlike the ordinary Kalman filter method, the matrix inversion lemma is not used in the
derivation of the generalized version, because R is no longer a scalar.

Comparing equation (59) with equation (44), it is seen that the generalized Kalman filter is
computationally similar to the LMS algorithm. Whereas the LMS algorithm uses a gain based on
∆θT and K , the generalized Kalman filter bases the gain on R, M , and ΘT. From equations (59) and
(60), it is also seen that if R is chosen large, R

-1
 will be small to make the identification update rate

slow. If R is chosen very large (R
-1
 very small), then an appropriately sized M

-1
 matrix is required

to prevent singularity in the calculation of P (eq. (60)). It can also be noted that if M
-1
 were very

small, then the update gains would be essentially proportional only to Θ.

The multi-step approach of the generalized Kalman filter makes it less computationally
efficient. However, by possessing a “memory” of the n preceding measurements, the filter can
theoretically obtain improved accuracy and better noise rejection properties, even though using
less user-supplied tuning information.

3.5 Generalized Least-Mean-Squares Filter Method

Analogous to the generalization done for the Kalman filter, the generalized least-mean-squares
(LMS) filter method extends the classic LMS method to allow the identification to be based on
more than the most recent measurement and control input. The goal of the multi-step expansion is
to obtain a filter having improved accuracy and better noise rejection properties.

The generalization of the classic LMS filter is done by grouping the most recent sequence of
control and measurement vectors into the Θ and Z block matrices as defined by equations (8) and
(9). As for the classic LMS method, the generalized version assumes that the update equation for
transfer-matrix identification can be written in the steepest descent form of equation (37). The
generalization of the LMS filter is done by expressing the error gradient in multi-step format as
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ε i i i(= −Z TΘ)  (61)

(1 x n) = (1 x n) - (1 x j)(j x n)

Then, the weighted-mean-square error is expressed as

ε ε εi i i
T2 = W  (62)

ε i i i i i
T2 = − −( ) ( )Z T W Z TΘ Θ  (63)

ε i i i
T

i
T

i
T

i i
T

i
T

i
T2 = − +Z WZ Z W T T WZ T W TΘ − Θ Θ Θ (64)

where W  is a diagonal weighting matrix which can be used to place greater weight on the most
recent measurements. The gradient of the square error with respect to T i is then found from
equation (64) as
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∂
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2
T

Z T W
i

i i
T= − −( )Θ Θ

 (65)

Substituting this expression into equation (37) and substituting Ti for x produces

T T Ti i i i i
Tk 1 k k (k) (k) k k( + ) = ( ) + 2 Ζ Θ Θ( )−[ ]( )  (66)

(1 x j) = (1 x j) + (1)(1) [ (1 x n) - (1 x j)(j x n) ] (n x n) (n x j)

or in matrix form

T T K T(k (k) (k) (k k k)T+ = + −[ ]1 2) ) ( ) (Z Θ Θ  (67)

(i x j) = (i x j) + (1)(i x i) [ (i x n) - (i x j)(j x n) ] (n x n) (n x j)

Since the structure of the identification equations in equation (67) is the same as that of the
classic LMS filter, for a multi-step batch size of 1, the classic and generalized LMS filters are the
same. Therefore, the considerations governing the selection of K  for stability and convergence are
the same as those presented for the classic LMS algorithm.
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4. COMPUTATIONAL EFFICIENCY

The computational burden of each method was analyzed by calculating the number of
additions, subtractions, multiplications, and inverse operations required by each method to identify
a transfer matrix of dimension (6 x 6). This information is presented in table 1, along with the time
required to implement each operation.

TABLE 1. Comparison of operations required to identify a (6 x 6) transfer matrix.

Type of
operation

Computation
time* msec
n = 1 (6, 18)

WLSE Kalman
filter

LMS
filter

Generalized
Kalman
filter

Generalized
LMS
filter

Scalar add 1 1

Scalar inverse 2 1

(6 x 1)(1 x 1) 6 2

(6 x 6) ± (6 x 6) 33 3 1 2 1

(6 x 1) - (6 x 1) 7 1 1

(6 x n) - (6 x n) 7 (33, 91) 1 1

(1 x 6)(6 x 1) 5 1

(6 x 1)(1 x 6) 10 2 1

(6 x 6)(6 x 1) 4 2 1

(6 x 6)(6 x 6) 20 1 2 1 1 1

(6 x 6)(6 x n) 4 (20, 60) 1 1

(6 x n)(n x 6) 10 (20, 42) 2 2 1

(n x n)(n x 6) 6 (20, 112) 1

(6 x n)(n x n) 6 (20, 118) 2 1

Inverse (6 x 6) 170 1 1
*Approximate computation times are based on IBM 386 architecture with a WE DSP32C processing
   board run at 50 MHz.

The time needed for each operation, of course, is dependent on the type of computer and
programming language used to implement the on-line identification. The types of machines
available range from personal computer lap-top configurations to dedicated array processor
systems having several microprocessors and several data paths to facilitate high-speed, pipe-lined
operations (see ref. 26 for further details). To be conservative, the author has decided to calculate
the computation time based on a personal computer hosting a WE DSP32C processing board
running at 50 MHz.

Figure 4 presents a graphical comparison of the computation times for each of the
identification methods. Here it is seen that the generalized LMS (GLMS) algorithm using a batch
size of 6 was still faster than the classic Kalman filter. The generalized Kalman filter (GKF) and
weighted-least-squares-error (WLSE) methods were the slowest. Their computation times,
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however, are still sufficiently fast compared to the average helicopter rotor-revolution period of
150 to 200 msec. Therefore, the desire to update the transfer-matrix parameters as often as once
every rotor revolution certainly does not eliminate any of the algorithms on the basis of
computational speed.
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Figure 4. Comparison of identification algorithm computation times based on IBM 386 architecture
with a WE DSP32C processing board running at 50 MHz.

5. SIMULATION PROGRAM

Identification performance was evaluated by modeling the rotorcraft as a quasi-steady, linear
system, in which the harmonics of vibration were related to the harmonics of blade-pitch control
by a linear transfer matrix. Though this type of modeling could not predict helicopter vibration in
units of g's, the purpose of simulating the system-identification algorithms was fully achieved.

A comprehensive helicopter dynamics analysis code for modeling the complexities of the
helicopter aerodynamic environment and airframe/rotor dynamics was not used to evaluate the
performance of the system-identification methods. The reason was that it was doubtful that a
sufficiently accurate wake model could be found to represent the high-frequency air loads and
resulting fuselage vibrations. In fact, the development of such a code would have been a more
formidable research problem than the original task of simulating the identification algorithms.
Therefore, for the limited purposes of this study, it was simply more efficient to generate the
helicopter transfer matrix artificially, using some ordinary matrix algebra. This simplification
allowed the performance of the identification algorithms to be evaluated quickly. The limitation of
this simplified approach, however, was that with the approach it was not possible to study the
influence of the helicopter dynamics on the identification performance.
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The simulation program consisted of three basic parts: (1) generation of the transfer-matrix
model and uncontrolled vibration (response metric), (2) computation of the control command, and
(3) simulation of the system-identification code (fig. 5). Coupling the identification and controller
formed an adaptive regulator for vibration control. The function of the controller was to either
excite the system dynamics for open-loop identification or to minimize the rotorcraft vibration to
permit study of closed-loop system identification. The transfer-matrix model was used to generate
the N/rev vibration coefficients as the sum of the uncontrolled vibration, the measurement noise,
and the vibration induced from the application of the HHC commands. Using the HHC inputs and
the plant-generated vibration outputs, the identification code was able to simulate the system-
identification methods. Many types of system-identification problems—for example, singularity of
the control covariance matrix, low signal-to-noise ratio, high measurement noise, high process
noise (unmodeled dynamics), and error in the tuning parameters—could be modeled using this
simulation.

Controller

Transfer matrix variation

Induced vibration

Process noise

Identified
transfer matrix

Optimal controls 
(if closed-loop) or
random excitation 
(if open-loop)

Identified
or measured
uncontrolled

vibration

Measured vibration

Measurement noise

Uncontrolled 
vibration history

Identified
transfer matrix

Identified
or measured
uncontrolled

vibration

Plant
model

Σ

Identifier

Figure 5. Outline of simulation program.

5.1 Transfer-Matrix Modeling

A transfer matrix was used to translate changes in the input HHC control vector θ to changes in
the response measurement z. The transfer matrix had six columns, corresponding to six control
inputs, and from 1 to 12 rows, depending on the number of outputs being simulated. For example,
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this size transfer matrix would be needed between a (6 x 1) input control vector (composed of the
sine and cosine coefficients of collective, lateral, and longitudinal 4/rev swashplate excitation) and
the response vector composed of 2 -12 sine and cosine coefficients of measured vibration. The
simulation program could change all the elements of the transfer matrix T  in order to study the
ability of system-identification methods to track changes in the transfer matrix. The propagation of
the transfer matrix with simulation step (k) was programmed as

T T T0( ) =k (k) G k) (k)1
(i j)

T N+ −[ ] ++1 sin(Ω  (68)

with T k T for k th stepo A( ) = 100 (69)

With this representation, the transfer-matrix elements could be held constant, varied continuously,
varied randomly, or changed in a step-wise manner.

The initial value of the transfer matrix, T 0, was composed of randomly selected numbers
between 0 and 1. Such a matrix would generally be representative of a well-scaled actual
helicopter transfer matrix. By choosing the transfer-matrix values as random numbers between -1.0
and 1.0, a process-noise matrix (TN) of 10% could therefore be defined as a matrix of random
numbers between 0.1 and -0.1.

After simulation step 100, the T0 matrix was allowed to remain constant or to change in a
prescribed manner. Most identification performance was evaluated for the condition of a single-
step change in the matrix at simulation step 100. Physically, this type of change might be
encountered when taking the helicopter rapidly from one constant flight speed to another. This
type of single-step change in the transfer matrix represented the easiest identification task to
analyze. The identification process would either succeed in re-identifying the new transfer matrix,
display convergence or stability problems, or simply be nonadaptive. For some simulation runs,
the transfer matrix was varied continuously after step 100. These variations are described in
section 7.1.

5.2 Vibration Generation

As mentioned in section 2, the harmonics of the measurement vector to be reduced consisted of
the sine and cosine coefficient harmonics of the vibration. This vector, denoted as z, was computed
for simulation step k as

z(k +1) = (k) k z (k z (k0 NT[ ] + + + + +θ( ) ) )1 1 1  (70)

where T (k) represented the transfer matrix at step k, θ was the control vector, z0 was the
uncontrolled vibration, and zN represented the measurement noise. The z0 and zN quantities could
be zero, held constant, made random, or given some other prescribed variation. In most of the
simulated conditions, z0 was held constant to indicate a steady flight condition. Identification was
always first studied for the ideal case of no measurement noise (zN = null vector). For the
simulation cases showing good identification performance under ideal conditions, the simulations
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were repeated with various amounts of measurement noise. By changing zN, the signal-to-noise
ratio (i.e., z/zN) could be adjusted.

5.3 Controller Simulation

The controller generated the (6 x 1) θ-vector, representing the harmonics of the blade-pitch
control motion. For the case of open-loop identification, the controller generated random controls
to excite the plant dynamics. For the case of identification during closed-loop vibration control, the
controls were computed using a one-step deterministic control law of the type described in
reference 14. This controller sought to minimize the value of a quadratic performance index, JC,

J z (k) z(k) (k) (k (k) (k)C
T

z
T T= + +W W Wθ θ θ θθ θ) ∆ ∆∆  (71)

where Wz, Wθ, and W∆θ were defined as diagonal, positive definite matrices specifying the relative

weighting given toward minimizing the vibration, blade-pitch control amplitude, and blade-pitch
control rate, respectively. By substituting the identities

z(k k k z(k) ( ) ( ) )= − −[ ] + −T θ θ 1 1  (72)

∆θ θ θ( ) ( ) ( )k k k= − − 1  (73)

in equation (71), and then setting the partial derivative of JC with respect to θ equal to zero, the
deterministic control laws were produced. For the case of global transfer-matrix model
representation, the deterministic control law was given by

θ θθ( ) ( )k k zT
z 0= − −[ ]D W T W∆ 1  (74)

and for the local model by

θ θθ( ) ) ( ) ( ) )k ( + k D z(kT
z

T
z= − − −D T W T W T W∆ 1 1  (75)

where for both cases

 D = ( +T
zT W T W W∆θ θ+ −) 1

(76)

Note that when using the global model, the identified uncontrolled vibration was used, whereas
when using the local model, the measured vibration was used.

For closed-loop identification, the controller was usually tuned to balance the trade-off between
minimizing vibration, control rate, and absolute control by specifying the weighting matrix
diagonal values to be W z = 1.0, W∆θ = 0.05, and Wθ = 0.0. These weightings were found by trial
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and error to produce good controller performance. With these settings, the controller would
generally converge rapidly to the proper vibration control setting without manifesting unstable
behavior. On the basis of results not presented herein, it was found that varying the weighting on
W∆θ and Wθ from 0 to 0.20 did not change the basic vibration control or identification convergence

pattern significantly. Values of W∆θ and Wθ from 0.20 to 0.50 were found to provide too much

damping on the control action and to cause poor controller performance, though they did not
generally affect identification performance.

5.4 Identification Algorithms

The system-identification equations presented in section 3 were used to form the identifier
modules which derived an estimate of the transfer matrix T ID at each step of the simulation.
Identification performance was then measured by the error between the true plant transfer matrix
and the identified transfer matrix. Since the system transfer matrix could range in dimension from
(1 × 6) to (12 × 6), it was necessary to create an identification performance comparison index. The
index chosen was the sum of the absolute value of the identification errors for all elements of the
matrix divided by the number of elements NT in the matrix,

JID =

−
=

−

=
∑ ∑
i j

ID

T

i j i j

N
1

1 12

1

6

| |T T( , ) ( , )

(77)

This index made possible a graphical presentation of the identification error as a function of the
simulation step. However, it masked the variation of the individual matrix elements and also
obscured some details of the identification process. A subtle point of this index is that it is
necessary to recognize that a JID = 0.25 implies a 50% identification error in the transfer-matrix
elements. The reason for this is that with the elements of T chosen as random numbers between -1
and +1, random errors in T ranging between -0.5 and 0.5 would have an absolute value range of
0.0 to 0.5, with the average error being 0.25.

6. OPEN-LOOP IDENTIFICATION OF THE LOCAL MODEL

Open-loop identification of the local transfer-matrix model was studied by having the
controller generate random input commands to excite the system dynamics. This represented the
ideal case for system identification, because the level of excitation did not diminish as the
simulation progressed. Identification performance with and without measurement noise was
compared for all of the identification methods. For all cases presented below, the initial estimate of
the transfer matrix was specified without any starting error.

After simulation step 100, the system transfer matrix was changed to a new matrix in order to
determine how fast each identification method could re-identify the new transfer matrix. The
transfer matrix used after step 100 was generated as the sum of the first transfer matrix plus a
matrix of random numbers between -0.5 and +0.5. Since the original transfer matrix was composed
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of numbers between -1.0 and +1.0, this was a change of about 50% from the original transfer
matrix. The transfer matrices before and after the change at simulation step 100 are presented in
table 2.

TABLE 2. Comparison (6 x 6) transfer matrix before and after simulation step 100.

Before step 100 After step 100

−1.00 0.67 −0.64 0.02 0.12 0.00

−1.00 0.26 0.70 0.14 0.70 −0.57

−0.78 −0.26 −0.29 0.22 0.61 0.39

0.53 −0.60 −0.33 0.09 0.98 0.83

−0.64 −0.93 −0.88 −0.39 −0.33 0.70

0.81 0.97 0.37 −0.94 0.23 0.75



















→

−0.75 1.17 −0.40 −0.35 −0.18 −0.20

−0.82 0.13 0.33 0.48 0.41 −0.34

−1.01 −0.53 −0.66 −0.15 0.59 0.86

0.38 −0.46 −0.07 0.37 0.68 0.43

−0.91 −0.60 −0.51 −0.42 −0.56 1.02

0.67 1.34 0.16 −0.49 −0.19 0.70



















Identification performance was then judged by the amount of identification error remaining
after simulation step 100. Without identification, the identification error remaining after step 100
would be constant (fig. 6). (The shading in fig. 6 under the identification error is only for visual
effect and has no special significance.) Identification plots resembling that of figure 6 would
therefore be indicative of little or no identification improvement. With good identification, the
identification error would be brought back to zero.

Note. The simulation results presented in figures 6–99 appear at the end of the report.

6.1 Open-Loop Weighted-Least-Squares-Error Simulation

Least-squares identification was studied using a (6 x 6) transfer matrix. A minimum batch size
of n = 6 was therefore required for the least-squares identification. Figure 7 shows that for a batch
size of 6, no measurement noise, and W set equal to a (6 x 6) identity matrix, the identification of
the new transfer matrix occurred within six steps after the change in T  at simulation step 100.
However, with 10% measurement noise, the identification process became very erratic (fig. 8(a)).
Some of the identification-error peaks went substantially beyond the plot border. Figure 8(b)
shows that by increasing the batch size to 8, the peaks of high identification error were attenuated.
As the batch size was made larger still, the identification error was further reduced. Figure 8 shows
the identification error using batch sizes of 10 (fig. 8(c)), 12 (fig. 8(d)), and 24 (fig. 8(e)). The
steady-state identification error was clearly lowest for batch size 24 (fig. 8(e)), the batch size that
also required the longest computation time. Since each measurement had some measurement error,
the only way to lower the identification error to zero would have been to use an infinitely large
batch size. Figures 9(a) and 9(b) show that the effect of higher measurement noise was to raise the
steady-state identification error.

The effect of using exponential weighting was to increase the rate of convergence. Figure 10
shows the identification error (for batch size 24) with γ set equal to 1.0 (i.e., no relative weighting,
fig. 10(a)); to 0.9 (fig. 10(b)); to 0.8 (fig. 10(c)); and to 0.7 (fig. 10(d)). Although there was an
improvement in the identification convergence speed after the disturbance at simulation step 100,
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the steady-state identification error was higher. It was concluded that a batch size of about 12 with
no exponential weighting was comparable to using a batch size of 24 with γ equal to 0.7.
Considering that the computational burden increased by more than the square of the batch size (see
eq. (15)), the choice of using a batch size of 12 with no exponential weighting is computationally
preferable.

Figures 11(a) and 11(b) show that increasing the dimension of the transfer matrix from (6 x 6)
to (12 x 6) had little effect on the identification performance. This was expected, since
theoretically only the column dimension of T relative to the batch size is important. In practice, for
good identification performance, the batch size must be about 1.5 to 2 times the column dimension
of the transfer matrix. The number of rows in the transfer matrix did not influence the overall
identification performance.

6.2 Open-Loop Kalman Filter Simulation

The ordinary Kalman filter was simulated for the same test condition as the weighted-least-
squares-error (WLSE) method. As discussed in section 3, the Kalman filter required that starting
estimates for the transfer matrix, T0, and for the r, M , and Q tuning parameters be selected. In
actual application, a good starting estimate of T0 could be found using the least squares method.
For the present investigation, the transfer-matrix estimate was initialized to the true transfer matrix
for simplicity. (This assumption was later removed, as explained in sec. 6.6 below.) Ignoring (for
the moment) the possibility of P going to zero, Q was set equal to zero to simplify the tuning task.
In this way, tuning was reduced to the selection of two parameters, r and M .

In the first simulation runs, a parametric variation of r and M  was studied for the case of no
measurement noise. Figures 12-15 show results for various values of r and with the diagonal
elements of M  having values of 0.1, 1.0, 10.0, and 100.0. The results for r = 0.1 are shown in
figure 12; for r = 1.0 in figure 13; for r = 10.0 in figure 14; and for r = 100.0 in figure 15. The
results of these 16 cases displayed fairly similar behavior. In most cases, the identification error
was reduced, though sometimes somewhat slowly. This indicated that precise specification of r and
M  was not very important. Table 3 presents the identification error at step 180 for each of the
identification trials shown in figures 12–15. From this table, it was observed that runs made with
the same M /r ratio had the same identification error. Table 4 shows that increasing the M /r ratio
improved the identification performance until a ratio of about 1 or 10 was reached.

TABLE 3. Classic Kalman filter open-loop identification error at
step 180 for no measurement noise.

M

r 0.1 1.0 10.0 100.0

0.1 0.1625 0.1614 0.1613 0.1613

1.0 0.1719 0.1625 0.1614 0.1613

10.0 0.2191 0.1719 0.1625 0.1614

100.0 0.2691 0.2191 0.1719 0.1625
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TABLE 4. Classic Kalman filter open-loop identification error at
step 180 as a function of the M /r ratio.

M/r Identification
error at step

180

0.001 0.2691
0.01 0.2191
0.1 0.1719
1 0.1625
10 0.1614
100 0.1613

1,000 0.1613
1,000,000 0.1611

The identification performance of the Kalman filter did not appear to be as good as that of the
least-squares method. Further investigation determined that the identification was poorer because
the P matrix was approaching zero as the simulation progressed. By raising the value of the Q
matrix from zero, considerable identification improvement was obtained. (Recall that Q serves to
keep P from ever going to zero.) Using M  = 10.0 * I 6 and r = 1.0, even the smallest value of Q
simulated (0.01) improved the identification convergence time (fig. 16). As Q was made larger, the
identification error continued to be further reduced, until a value for the Q diagonal elements of
about 10 was reached. For values of Q higher than 10, the identification performance was not
further improved.

The identification performance of the open-loop Kalman filter with 10% measurement noise
was evaluated using the filter tuning M  = 10.0 * I 6, r = 1.0, and Q = 10.0 * I 6. Figure 17(a) shows
that the addition of measurement noise had an effect similar to the that seen for weighted least
squares, and that the convergence to the steady-state error after the disturbance at simulation step
100 was fairly fast. In fact, it was just as good as the least-squares approach. Figure 17(b) shows
that setting M  = 1.0 * I 6 and r = 0.1 with Q  left at 10.0 did not change the identification
performance, because the M /r ratio remained the same.

6.3 Open-Loop Least-Mean-Squares Filter Simulation

Since the least-mean-squares (LMS) algorithm had only one tuning parameter, K S, tuning the
filter required no strategy like the kind used to tune the Kalman filter (e.g., keeping Q zero while
adjusting the M /r ratio). Figure 18 shows the identification behavior with the K S matrix diagonal
elements varied from 0.001 to 0.5, for the case of no measurement noise. When K S was very small,
very little re-identification was observed after step 100 (fig. 18(a)). As K S was made larger, the
identification improved until K S was made too large, and the identification process became
unstable (fig. 18(e)). Figure 18(d) shows that the K S diagonals equal to about 0.3 produced the best
identification performance for the condition of no measurement noise.
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The addition of 10% measurement noise raised the baseline level of identification error, but did
not prevent convergence to the correct transfer matrix to within the bounds allowed by the
measurement noise. As shown in figure 19, re-identification of the transfer matrix occurred within
about 20 simulation steps.

6.4 Open-Loop Generalized Kalman Filter Simulation

The generalized Kalman filter required the specification of the R * I n and M  * I 6 tuning
matrices. Although specification of Q was not required, the calculation batch size n needed to be
chosen. Of course, as the batch size was increased, so was the computation time.

In the simulations performed for the case of no measurement noise and a batch size n = 1, it
was seen that the ratio of M /R was the primary factor governing identification performance. Figure
20 presents the identification error for several M /R ratios. For small values of M /R, virtually no
identification took place after simulation step 100 (fig. 20(a)). As the M /R ratio was increased, the
identification performance improved until the ratio approached a value of about 10 (fig. 20(d)).
Because higher values did not continue to improve identification performance, an M /R ratio of 10
was judged to be good.

Using a value of 10 for the M /R ratio, the identification error was reduced much faster as the
batch size was increased (fig. 21). Even a batch size of 2 made a noticeable improvement. A batch
size of 8 increased the initial identification error slightly, but reduced the identification error
convergence time greatly. With a batch size of 1, identification convergence did not occur within
200 simulation steps (fig. 21(a)); whereas for a batch size of 8, only 13 simulation steps were
required (fig. 21(d)). A batch size of about 4 seemed to provide the best compromise between
minimizing the identification error produced at simulation step 100 and maximizing the
identification convergence rate after step 100.

It was anticipated that this multi-step method would also improve identification for the case of
10% measurement noise. Although this proved to be true, re-tuning of the M /R ratio was required.
Figure 22 shows that the identification performance did not improve as the batch size was made
larger if an M /R ratio of 10 was used. Figure 23 shows the identification performance using a
batch size of 4 with M /R ratios of 100, 10, 1, 0.1, and 0.01. These plots show that by decreasing
the M /R ratio, the performance of the generalized Kalman filter was much improved. An M /R
ratio of about 0.1 appeared to provide the best identification performance for a batch size of 4 and
10% measurement noise (fig. 23(d)). Smaller M /R ratios continued to decrease the steady-state
error, but lengthened the convergence time.

6.5 Open-Loop Generalized Least-Mean-Squares Filter Simulation

Since the generalized and classic least-mean-squares (LMS) filters were the same algorithm for
a batch size of 1, simulation of the generalized LMS method was done primarily using batch sizes
greater than 1. Figure 24 shows that for the case of no measurement noise, increasing the batch
size to 2 improved the identification convergence time slightly. Although not shown in figure 24,
increasing the batch size to 4 with K S = 0.3 made the identification very unstable and quickly
aborted the simulation program. Figure 25 shows that by decreasing KS, good identification
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performance could be regained with a batch size of 4. Figure 25(a) shows that the identification
error became very large after simulation step 130 for K S = 0.2. (Fig. 25(a) does not show the exact
magnitude of the error, but any error greater than 1 is not good.) Figure 25(b) shows that excellent
identification performance was obtained by decreasing K S to 0.15. This value of K S also produced
stable identification for batch sizes of 6 and 8 for the case of no measurement noise (fig. 26).

When 10% measurement noise was introduced into the simulation, however, K S needed to be
made smaller to maintain identification stability. Figure 27(a) shows that for a multi-step batch
size of 6 and K S = 0.15, the identification error tended to be large at times, and the convergence
was unstable, as noted by the large spikes in the identification error near the end of the record.
Figure 27(b) shows that good identification performance could be regained by decreasing KS to
0.05. Figure 28 shows that further reduction in K S allowed identification stability to be maintained
as the multi-step batch size was made larger.

Figure 28 also shows that the steady-state identification error was made smaller by increasing
the batch size. However, since larger batch sizes also required smaller values of K S for stability,
the identification convergence time was also increased. For example, in figure 28(e) it is shown
that the identification error at the end of the run was the smallest, but the decay in the identification
error after step 100 was the slowest. Overall, a K S of 0.1 with a batch size of 4 seemed to provide
the best compromise between identification convergence speed and steady-state identification
accuracy (fig. 28(c)). A batch size of 1 with K S = 0.3 also produced good identification
performance (fig. 28(a)).

6.6 Effect of Transfer-Matrix Initial Conditions

In the simulations described above, the initial estimate of the transfer matrix was initialized to
the true system transfer matrix so that the identification could start with zero identification error.
Of course, this was unimportant for the least-squares method, since its formulation did not rely on
a current estimate of the transfer matrix to form a new estimate. The other methods, however, used
a starting transfer-matrix estimate in their recursive formulations.

Figure 29 compares the identification error of the four recursive methods for the case of 10%
measurement noise and starting from an initial T matrix of all 1’s. The tuning values used for r, R,
M , Q, and K S were the best values found for each method above. Each of the methods was seen to
converge without difficulty after about 50 simulation steps. It was also observed that the
generalized methods using a batch size of 4 or 6 were able to perform the initial identification
more accurately. Since the identification of the true transfer matrix from a starting matrix of all 1’s
was sufficiently general, any filter initialized with an estimate of T  found by the least-squares
method should perform even better. Other simulation data (not presented here) showed that
different values of r, R, M , Q , and K S did not change the basic conclusion that the initial
conditions on the transfer matrix were relatively unimportant for open-loop identification
purposes.
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7. CLOSED-LOOP IDENTIFICATION OF THE LOCAL MODEL

It is generally believed that closed-loop and open-loop system identification are fundamentally
the same, but they are not. During open-loop identification, random excitation of the system
insures that the system output will always be large enough to produce a good signal-to-noise ratio.
In closed-loop identification, however, the control commands are chosen to perform some useful
purpose like controlling helicopter vibration as in the present application. As the controller reduces
the vibration, the point may be reached where the noise begins to dominate the residual measured
vibration signal. At the same time, as the controller approaches a steady-state optimal control
solution, the control commands from one step to the next will not be very different since they are
nearly optimal. In this situation, the small changes in the command signal are real, but the changes
in the measured vibration are mostly a result of measurement noise. The system-identification
algorithm may therefore erroneously attempt to identify a matrix relating the small changes in
control to the random changes in the measurement signal. This matrix is, of course, the null matrix.

The results discussed in this section are for identification of the local-system model in closed-
loop operation. Just as for the case of open-loop identification, simulation of closed-loop
identification was initially studied by abruptly changing the transfer-matrix elements at simulation
step 100. The new matrix was again formed by adding a matrix of random numbers between -0.5
and +0.5 (50% random noise) to the transfer matrix. This simulation studied how effectively the
identification algorithms could accommodate a mild, one-time change in the system transfer matrix
during closed-loop operation. After tuning each of the methods for the one-time change, the five
identification algorithms were examined to see how well they could track a continuously changing
system transfer matrix.

During the simulation, the performance of the closed-loop regulator was also studied. Because
the controller used the identified transfer matrix to compute the vibration controls, the level of
vibration suppression achieved also served as an indirect indicator of system-identification
performance. However, several times the controller masked or made up for identification errors.
Occasionally, it was observed that identified matrices having the same overall level of
identification error did not always control vibration with equal effectiveness. Whereas one matrix
might be identified well enough for use in a control law, the other might produce unstable
behavior. A relevant analogy is two people lost in the wilderness who need to travel 8 miles west
to find their desired destination. The person saying “Let’s go one mile west” gives better advice
than a person saying “Let’s go one mile north.” Even though both will be in error by about 7 miles,
successive approximation will enable the one who knows to go west to find the destination after a
number of iterations. In the same way, the identified system transfer matrices also point the way to
minimize the system vibration, though not always in one step. Transfer matrices that allow the
controller to iteratively suppress the vibration are the ones having the right relative proportion
between the matrix elements. These matrices ultimately work much better for vibration control.

The performance of the vibration controller was calculated by comparing the levels of
controlled versus uncontrolled vibration. This was possible in simulation, since both the
uncontrolled and controlled vibration levels were always known. However, because plotting all of
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the vibration channels versus simulation step would have presented a complex picture, a vibration
index was defined as
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where JZ0 represented the uncontrolled vibration index, and JZ represented the controlled vibration
index. These scalar quantities could be easily plotted and compared, just like the index used to plot
the mean identification error. By plotting these values along with the system identification error, it
could be seen how the identification error influenced closed-loop control performance.

Figure 30 presents the identification error and vibration indices for the case of control without
identification. The level of vibration for no control was chosen to be 1 for all six channels (hence
the sum squares average was 1 also) and is indicated by the dashed line. The vibration
reduction/increase with control applied is indicated by the cross-hatched area under the solid line.
The cross-hatched shading was used to avoid confusion with the identification-error solid shading.
Before simulation step 100, the uncontrolled vibration level was reduced very smoothly because
the transfer matrix was initialized without error. In fact, the vibration would have gone to zero in
one step had not a relaxation constant of 10% been used to slow the control action. The relaxation
was used to improve controller stability. (Alternatively, values for Wθ and W ∆θ could have been
selected as well, but using a relaxation constant was computationally more efficient because it
replaces several matrix multiplications with a single vector-scalar multiplication, namely θ* = kθ.

See how equations (74)–(76) simplify with W θ and W ∆θ removed.) After step 100, the transfer-
matrix elements were given a step-change identical to the one given for the open-loop
identification runs. As can be seen, the uncontrolled vibration level became very large as the
controller diverged. The divergence occurred because the transfer matrix used by the controller
was not updated after the change at simulation step 100. For this reason, the controller calculated
control values that made the uncontrolled vibration worse rather than better.

7.1 Closed-Loop Weighted-Least-Squares-Error Identification: Local Model

Simulation of the closed-loop weighted-least-squares-error (WLSE) identification was done
using a 6 x 6 local transfer-matrix model. A batch size of 8 with no exponential weighting was
used, since that configuration showed good open-loop identification performance. However, the
identification performance was unstable, even for the case of no measurement noise (fig. 31). In
fact, after step 170, the identified transfer matrix became the null matrix. Surprisingly, the
vibration control was very good. This warrants special discussion.



36

It seems paradoxical that the vibration could be so effectively controlled during periods when
the transfer matrix was so poorly identified. The reason was that the controller found the optimal
vibration-control input before the transfer matrix became corrupted. Shortly after the new transfer
matrix was correctly identified at about step 110, the controller found the correct steady-state
control settings to reduce the vibration. However, as the control-vector elements became nearly
optimal, the changes to it became very small for successive simulation steps and the control-
covariance matrix, ΘWΘT (see eq. (14)) became singular. When this happened, the least-squares
identification method diverged. Yet, because the controller produced its control updates
proportional to Z(k-1) (see eq. (75)), and because Z (k-1) was near zero, the controller did not change
the control settings even though T  was greatly in error. For this reason, good vibration-control
performance was maintained even when the identified transfer matrix became inaccurately
defined. Most likely, if the vibration amplitudes and phases had been changed abruptly at about
step 170, the controller would have also diverged.

The key to improving the identification performance of the least-squares method is to prevent
the control-covariance matrix, ΘWΘT, from becoming singular. Two methods of achieving this
were evaluated: (1) to skip the identification and moving-block sequence update whenever the
vibration fell below a predefined level and (2) to add an open-loop perturbation component to the
control vector.

Figure 32 shows the resulting identification and control performance for the same case as that
shown in figure 31, except that a software switch was added to allow the identification code and
moving-block process to be skipped whenever the vibration level was below an index of 0.05 (or
5% of the baseline uncontrolled vibration level). This seemed to work very well at first. However,
skipping the identification cycle whenever the vibration level was below 0.05 did not work for the
case of 10% measurement noise (fig. 33). Since the vibration level was always above 0.05, the
software switch was rendered ineffective as a means of stabilizing the identification process. (Note
that because the identification error was greater than 1, it exceeded the plot boundaries.) As shown
in figure 34, increasing the switching value to 0.20 did not eliminate the problem. In fact, for that
case, the 10% error in Z(k-1) was evidently enough to diverge the controller solution, and both
identification and controller performances were degraded. Also of note in figure 34 were the points
of constant identification error near the 0.50 mark for periods when the identification routine was
bypassed. Examination of the transfer matrix near the 0.50 mark revealed a matrix of zeros. This
was the expected value of the transfer matrix relating smaller changes in the deterministic control
solution to random measurement noise.

More simulation runs were conducted to refine the switching points for other amounts of
measurement noise. Figures 35(a) and 35(b) show for 1% and 3% measurement noise that skipping
the identification for a vibration threshold of 0.15 made the identification and controller
performance very acceptable. At 5% measurement noise, the identification and vibration control
were still fairly good, but were beginning to degrade (fig. 35(c)). For 7.5% measurement noise, the
identification performance was seriously degraded (fig. 35(d)). As was already shown in figure 34,
for 10% measurement noise, both identification and controller performance were poor. Therefore,
as a means of improving identification, the method of skipping the identification code for vibration
levels below a certain set point was not very effective.
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The second method (of adding a perturbation signal to improve identification performance)
was also found to be unsuccessful in improving the overall identification performance. For the case
of 10% measurement noise, adding ±10% perturbation signal to the control vector did not improve
the identification performance, but did make the controller performance better (fig. 36(a)). Figure
36(b) shows that increasing the amount of random perturbation to ±50 % made both identification
and controller performance much worse.

However, increasing the batch size from 8 to 24 considerably improved both identification and
controller performance for the 10% measurement-noise case (fig. 37). Figure 37(a) shows that
fairly good identification performance was obtained using a batch size of 24, a zero-vibration
definition of 0.20, and random forcing perturbation of 10%. The controller performance was also
good. Figure 37(b) shows that reducing the zero-vibration definition to 0.10 degraded the
identification accuracy, but did improve the controller performance a little. Figure 37(c) shows that
decreasing the random forcing to 0.05 further increased the identification error.

Lastly, the effect of removing the zero-vibration definition and using only random perturbation
to improve the identification performance was studied using a batch size of 18. Figure 38 shows
the identification and controller performance for random forcing of 30% (fig. 38(a)), 60% (fig.
38(b)), and 100% (fig. 38(c)) of the baseline control. It can be seen that as the amount of random
forcing was increased, the steady-state identification error was reduced, but the steady-state
controller performance was severely degraded. Moreover, in comparing these figures with figure
37(a), it can be seen that removing the zero-vibration definition made the identification and
controller performance worse overall, regardless of the amount of random forcing.

Since the least-squares method produced the lowest identification errors using a batch size of
24, a zero-vibration definition of 0.20, and a random forcing perturbation of 10%, that
configuration was tested for identification of a continuously varied transfer matrix. In this test,
sinusoidal variation of the transfer matrix from one matrix to another began after simulation step
100 and was conducted according to the following schedule.

Simulation Steps System Transfer Matrix

 0-100 T = T0

101-300 T = T0 + 0.25 *(TRANDOM)*sin(k π/500)

301-500 T = T0 - 0.50 *(TRANDOM)*sin(k π/500)

501-700 T = T0+ 0.75 *(TRANDOM)*sin(k π/500)

701-900 T = T0 - 1.00 *(TRANDOM)*sin(k π/500)

901-1000 T = T0

In the above schedule, TRANDOM was a matrix of random numbers between -1 and +1. Therefore,
the magnitudes of the disturbances were 25%, 50%, 75%, and 100% from the baseline transfer
matrix. Note also that the sign of the disturbance changed every 200 simulation steps to make the
identification problem more challenging. Figure 39 shows the identification-error index produced
by this variation for the case of no system identification. It should be noted that although the



38

absolute value of the identification error is seen to have discontinuities of only 0.25 (or 25% of the
baseline matrix)—because the sign of the disturbance changed every 200 simulation steps—the
actual magnitude of the change was much larger. For example, note from the schedule above that
at simulation step 301, the transfer matrix was actually disturbed by 0.75 [0.25 - (-0.5)]. Had the
identification metric been able to show both positive and negative errors, the plot in figure 39
would have shown the second and fourth 1/4 cosine waves as being negative.

Figure 40 shows the identification error and vibration produced by the least-squares method
using a batch size of 24. Although the vibration control was not too bad, the identification error
was higher than in the case of no identification. Exponential weighting was also simulated, but this
did not improve the identification performance. The poor identification performance probably
resulted from skipping the identification cycle during times of low vibration, thereby allowing the
transfer matrix to change too much between identification updates.

7.2 Closed-Loop Kalman Filter Identification: Local Model

Since the classic Kalman filter appeared to work best in open-loop for the tuning selection of
r = 1, M  = 10, (or any M /r ratio of 10) and Q = 10, this tuning was initially selected for the closed-
loop simulations. Figure 41(a) presents the baseline case of no noise and with the same 50% step-
change in the transfer-matrix values at simulation step 100 as was done previously for the closed-
loop, weighted-least-squares simulation. The vibration was suppressed in one iteration at the start
of the simulation, since the initial estimate of the identified transfer matrix had no error. After
simulation step 100, the controller initially made the vibration worse than the uncontrolled state,
but then quickly regained control after a few simulation steps. During this period, the Kalman filter
began to slowly correct the identified transfer matrix, as seen by the decrease in the identification
error beginning after simulation step 100 (fig. 41(a)). However, before the identification process
progressed very far, the deterministic controller achieved a nearly zero controlled vibration level.
As the vibration neared zero, the identification process was effectively shut down. Equation (33)
shows that as the change in control and the change in vibration both approach zero, the
identification updates become very small. Figure 41(b) shows that the introduction of a 10%
probing signal to the control vector allowed the identification process to continue to reduce the
identification error after simulation step 100.

The introduction of 10% measurement noise caused the identification process to become
divergent (fig. 42). The divergence occurred because the Kalman filter was identifying the local
transfer matrix relating the changes in (mostly) measurement noise to the small changes in
deterministic control. Nevertheless, the vibration controller produced surprisingly good control
considering the high amount of identification error. Once again, having successfully arrived very
close to the optimal control setting, the deterministic controller did not make large changes to the
control vector because the measured vibration was small. Thus, the vibration remained well
controlled, even though the transfer-matrix identification error was large.

The identification divergence problem caused by the introduction of measurement noise was
remedied in two ways. First, it was found that adding a 10% probing signal to the control input
stabilized the identification process and eliminated almost all growth in the identification error
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(fig. 43). The probing signal stabilized the identification process by increasing the signal-to-noise
ratio. The vibration control, however, was made slightly worse than without probing.

The second method of stabilizing the identification process in the presence of measurement
noise was to make adjustments in the r, M , and Q tuning parameters. After another parametric
variation similar to that performed for the open-loop tuning, it was found that increasing the r/M
ratio made the closed-loop Kalman filter identification more stable. Without measurement noise,
setting r = 100 and M  = I 6 seemed to almost halt the identification process. As shown in figure 44,
the identification error after simulation step 100 looked very much like the plot for no
identification. However, whereas the vibration could not be controlled at all for the case of no
identification (fig. 30), the vibration control shown in figure 44 was excellent. Therefore, even
though convergence to the correct transfer matrix after step 100 was very slight, because the
vibration control was so effective, it was concluded that the Kalman filter made important changes
to the identified transfer matrix which allowed the controller to successfully iterate to the optimal
control. The identification scheme, though not converged, appeared to alter the ratio of the
transfer-matrix elements so that the deterministic controller could iteratively step toward the
optimal control. Once this optimal control was found, however, the identification process halted.

For the case of 10% measurement noise, the (r = 100, M  = I 6 ) tuning produced an
identification error that did not grow with 10% measurement noise, but instead was very constant
after the disturbance at step 100 (fig. 45). The vibration control was also more stable compared
with that shown in figure 43.

Figure 46(a) shows that the addition of 10% control probing did not lessen the identification
errors by a noticeable amount. Figure 46(b) shows that a very slight reduction in identification
error was achieved by simulation step 200 by using 30% control probing, but that the steady-state
vibration control was much worse. For 100% and 200% control probing, figures 46(c) and 46(d),
show that the identification error could be driven lower. However, in those cases, all vibration
control was forgone in order to produce large enough perturbations in the control vector to yield
better system identification.

The 100% control probing case was then repeated using the previous (r = 1, M  = 10 * I 6)
tuning which had produced the best system identification in open-loop. The measurement noise
level was 10% as before. The identification error was reduced much faster than with the (r = 100,
M  = I 6) tuning (fig. 47). Comparing figures 47 and 46(c) it was observed that before the transfer-
matrix change at step 100, figure 47 showed higher identification error than did figure 46(c). Yet
after the change at step 100, figure 47 showed less identification error. The reason was that the
tuning used for figure 47 effectively gave the Kalman filter a higher identification gain. So,
although it was more adaptive in the sense of being better able to re-identify the new transfer
matrix, it was also more sensitive to the spurious effects of measurement noise.

The classic Kalman filter identification performance was also tested for the case of continuous
transfer-matrix variation (see sec. 7.1). With r = 1 and M  = 10 * I 6, the identification error was
higher than the baseline (no identification) case, but the vibration control was good (fig. 48(a)). On
the other hand, with r =100 and M  = I 6, the identification error was lower than the baseline, but the
vibration control was not as good (fig. 48(b)). The latter tuning seemed to provide better
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identification, but also made the control more erratic. The former tuning produced a higher
Kalman filter identification “gain” (or r-1∆θTP of eq. (33); with P computed from eq. (32)), which
apparently drove the identification process unstable.

7.3 Closed-Loop Least-Mean-Squares Filter Identification: Local Model

The diagonal elements of K S were set equal to 0.30 for the LMS filter, since that tuning worked
well in open-loop identification. For the ideal case of no measurement noise, the identification
process was convergent after the transfer matrix was changed at simulation step 100 (fig. 49).
However, the identification process was effectively turned off when the uncontrolled vibration
became small. Similar to the Kalman filter, equation (44) shows that the identification updates
become very small as the changes in the control vector, ∆θ, become small. The identification error
continued to be reduced only until the vibration approached zero. When that occurred (at about
step 130), the changes in the control vector became small, and the identification process stopped.
For this reason, the identification error remained nearly constant after the vibration was reduced to
zero.

The addition of 10% measurement noise produced little change in the LMS identification
performance (fig. 50). Figure 51 shows the effect of changing the K S gains for the case of 10%
measurement noise. Figure 51(a) shows that reducing the gain to 0.1 produced slightly better
identification performance. The higher identification error shown in figure 51(b) resulted from
using too high a value for the K S gain elements (K S = 0.5 * I 6).

Figure 52 shows that the addition of 10% probing to the control vector (with K S = 0.1* I 6)
made the identification process slightly more convergent after step 100. Figure 53 shows that the
identification convergence could be further improved by increasing the amount of random forcing
to 100%. Although clearly too much for practical vibration control, this proved that the problem of
slow convergence was the result of having a poor signal-to-noise ratio in closed-loop operation.

Lastly, identification performance for the case of continuous variation of the transfer matrix
was evaluated (see sec. 7.1). Just as before, the measurement noise level was 10%. Compared with
the baseline case having no identification (fig. 39), the overall identification error was reduced (fig.
54). The vibration controller using the identified transfer matrix was fairly good.

7.4 Closed-Loop Generalized Kalman Filter Identification: Local Model

Closed-loop identification of the local model using the generalized Kalman filter was initially
simulated with R = 1 and M  = 10 (R = I N and M = 10 I 6), because that tuning worked well in
open-loop identification. Using a batch size of 1 for the case of no measurement noise and no
probing, the identification process stopped when the uncontrolled vibration approached zero (fig.
55(a)). In fact, after about 10 simulation steps, the identification error was seen to be almost
constant. However, the addition of a 10% probing signal allowed convergence to a much lower
identification error by the end of the simulation run at step 200 (fig. 55(b)).

With 10% measurement noise, the identification process became highly divergent (fig. 56).
Interestingly, the vibration control remained very good. Figure 57 shows that increasing the multi-
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step batch size helped delay the identification error growth, but did not prevent the identification
error from becoming large by iteration 200.

Figure 58 shows that the unbounded increase in the identification error was halted by
introduction of a 10% probing signal. This did not degrade the vibration control to a large extent.
For a batch size of 1, the overall level of identification error was about the same as that found
using the classic Kalman filter (fig. 58(a)). This was encouraging, because it meant that de-
coupling the recursive equations and reducing the number of tuning parameters (compared to the
classic version) did not worsen the identification accuracy of the generalized Kalman filter.
Increasing the multi-step batch size, however, did not improve identification performance until a
batch size of 48 was used (fig. 58(f)). With that batch size, however, the algorithm was very slow.
Since multi-step batch sizes of 4 (fig. 58(b)), 8 (fig. 58(c)), 12 (fig. 58(d)), and 24 (fig. 58(e))
actually produced greater identification error, a batch size of only 1 was determined to be the best
choice. Evidently, the inaccuracies introduced by inversion of the (n x n) R matrix in equation (55)
had a slightly negative trade-off with the additional information contained in the greater number of
measurements as the batch size became larger. For a batch size of 48, the identification
performance was improved somewhat, but at the expense of a much increased computation time.

In an effort to reduce identification errors with the multi-step Kalman filter, a technique termed
“cycle averaging” was utilized. In this method, the actual control and vibration vectors were not
used in the identification process. Instead, the average values of these quantities were computed
and used. In effect, this averaging process helped attenuate the effects of measurement noise.
Figure 59 shows the effect of averaging over 1, 4, 8, and 12 cycles while using a multi-step batch
size of 1. Compared to the baseline case shown in figure 59(a), cycle averaging over 4 cycles
substantially lowered the identification error (fig. 59(b)). Contrary to expectations, averaging over
8 and 12 cycles (figs. 59(c) and 59(d)) was not as effective as it was with 4 cycles. Figures 60 and
61 show that similar results were obtained using batch sizes of 4 and 8, respectively. For these
batch sizes, averaging over 8 cycles produced the best identification.

Overall, the best identification with R = 1 and M = 10 * I 6 was obtained using a batch size of 4
and 8-cycle averaging (fig. 62). For this case, the addition of 10% probing to the control produced
lower identification errors, but made the steady-state vibration control slightly worse.

The identification performance using the alternative Kalman filter tuning of R = 100 and
M = 1 * I 6 was then tested for the same case of 10% measurement noise and a batch size of 4.
Figure 63(a) shows that the addition of 10% probing made the identification slightly convergent
after step 100 for the case of no cycle averaging. Figure 63(b) shows that averaging over 8 cycles
made the identification worse. Therefore, with R = 100 and M = I 6, the best results were obtained
using a batch size of 4 without cycle averaging.

The identification results for the case of continuously varying the transfer matrix (see sec. 7.1)
are shown in figure 64. Figure 64(a) presents the results for the R = 1 and M = 10 * I 6 tuning with
averaging over 8 cycles; figure 64(b) shows the results having R = 100 and M = 1 with no
averaging. Though the identification and vibration control results were similar, the R = 1 and
M = 10 * I 6 tuning yielded lower identification errors and produced slightly better vibration
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control throughout most of the simulation run. With this tuning, the identification error was kept at
a fairly constant level, even though the disturbances became greater as the simulation progressed.

7.5 Closed-Loop Generalized Least-Mean-Squares Filter Identification: Local Model

The generalized LMS filter simulation was started with K S = 0.3 * I 6 since that value worked
well in open-loop simulation. Figure 65(a) shows that for no measurement noise, the identification
process was convergent until about simulation step 130, from which point it did not decrease
further. Figure 65(b) shows that by adding 10% probing, the identification error was further
reduced, but not greatly.

The generalized LMS filter identification process was not destabilized by the addition of 10%
measurement noise. Figure 66(a) shows that without probing, the 10% measurement noise did not
cause the identification errors to grow large; however, the addition of 10% probing did not greatly
improve the identification performance either (fig. 66(b)).

The effect of multi-step batch sizes was also simulated for the 10% measurement noise case.
For batch sizes of 4 or greater, it was found necessary to reduce K S to 0.1 * I6 in order to maintain
identification stability. Figure 67 shows the identification error and vibration control using multi-
step batch sizes of 4, 8, and 12. A multi-step batch size of 8 produced the lowest identification
errors. A batch size of 12 displayed unstable identification and control. However, other simulation
results (not presented herein) showed that identification stability could be regained by reducing K S

further. Unfortunately, that reduction also slowed the identification process greatly, and thereby
made the identification performance poor overall.

With a multi-step batch size of 8, figure 68 shows that adding 10% probing to the control
signal for the case of 10% measurement noise lowered the identification error somewhat,
compared to that shown in figure 67(b).

Lastly, the effect of cycle averaging, previously used with the generalized Kalman filter, was
simulated for the case of 10% measurement noise. Figure 69 presents the identification error
obtained for a multi-step batch size of 8 with averaging over 4, 8, and 12 cycles. These results
showed that averaging over 4 cycles (fig. 68(a)) improved the identification stability. Averaging
over 8 and 12 cycles did not help to further lower the identification error.

Since the generalized LMS filter was seen to work the best when a batch size of 8 and 4-cycle
averaging was used, that configuration was also evaluated for identification of a continuously
varied transfer matrix (see sec. 7.1). Using K S = 0.1 * I 6, the identification was found to be very
erratic. However, by reducing K S to 0.01 * I 6, identification convergence was regained. The
identification error was somewhat controlled, but grew larger as the simulation progressed (fig.
70). The vibration controller performance was also poor.
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8. CLOSED-LOOP IDENTIFICATION OF THE GLOBAL MODEL

Thus far, all the simulation results presented were those obtained when using a local transfer-
matrix model relating small changes in the control (cyclic pitch) vector to small changes in the
measurement (vibration) vector. Whereas the local model assumes linearity only about a local
operating point, the global model assumes global linearization about the identified uncontrolled
vibration. (Recall that the uncontrolled vibration, z0, is defined as the vibration level with the
control vector elements all set to zero.) While global linearization might present certain problems
for a highly nonlinear system, a possible advantage of the global model is that by using the
identified uncontrolled vibration, the controller might work better. That is, by using an identified
feedback variable, rather than a measured one, the effects of measurement-noise disturbances
might be better rejected.

In the global-model formulation, the last column of the identified transfer matrix represents the
uncontrolled vibration. For the (6 x 6) transfer matrix considered here, equation (6) becomes
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In this equation, the new (7 x 1) control vector consists of a (6 x 1) control vector and “1”
appended as the seventh element to add in the z0 terms. Placed in this form, the model can be
identified by using exactly the same equations developed for the local model (∆z =T∆θ) by

substituting z for ∆z and θ for ∆θ.

Presented below are some results obtained in simulation of the global-model identification and
vibration control using feedback of the identified uncontrolled vibration.

8.1 Closed-Loop Weighted-Least-Squares-Error Identification: Global Model

Identification of the global model using the weighted-least-squares-error (WLSE) method was
first simulated with a batch size of 12. Random changes to the input vector were made to excite the
plant matrix. Figure 71 shows that even for the case of no measurement noise, the identification
process was very erratic and produced high amounts of identification error. The vibration control
was also noted to be poor.

As it did with the local model, skipping the identification cycle for vibration lower than 0.05
(of the nominal value = 1.0) resulted in a stabilization of both the control and identification
processes (fig. 72). However, introduction of 10% measurement noise upset the performance
greatly. Acceptable identification and controller performances were regained by skipping the
identification cycle for vibration lower than 20% of the nominal value. Figures 73(a) and 73(b)
present the identification and control performance for the case of 10% measurement noise with
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identification-cycle skipping for vibration lower than 20% of the uncontrolled level for batch sizes
of 12 and 24, respectively. The identification error obtained using a batch size of 24 was clearly
much lower than that for a batch size of 12. The controller performance was very good using either
batch size.

The batch-size-24 configuration with 10% probing and zero-vibration defined at 0.20 was also
simulated for identification of a continuously varying transfer matrix previously described in
section 7.1. Figure 74 shows that the identification error grew large after simulation step 300.
Although not shown in that plot, the actual error was of the order of about 4 and was fairly
constant. Even with that amount of error in the identified transfer matrix, the vibration control was
remarkably good. This reflects favorably on the deterministic control law, since it was able to step
to the optimal control input, even though the identified matrix was not very close to the actual
plant model.

8.2 Closed-Loop Kalman Filter Identification: Global Model

Simulation results for the global model showed that just as for identification using the local
model, the ratio of r to the M  diagonal elements was the factor that most influenced closed-loop
identification. The identification error and vibration control for the case of no noise and M  = 1 * I 6,
are shown in figure 75 for r values of 1, 10, and 100. The (r = 100, M  = I 6) tuning provided the
lowest identification errors (fig. 75(c)). The tuning ratio of r = 1 and M  = 10 * I 6 was also tried,
since those values sometimes worked well with the local model. However, that tuning destabilized
the global-model identification entirely.

The addition of 10% measurement noise did not greatly affect the identification performance.
Figure 76 shows the results obtained for M  = I6, and for r values of 1 (fig. 76(a)), 10 (fig. 76(b)),
and 100 (fig. 76(c)). Just as for the no-noise case, M  = I 6 and r = 100 provided the lowest
identification errors and the best vibration control. Figure 77 shows that the addition of a 10%
probing signal did not improve the identification performance beyond that of figure 76(c).

Identification performance for the case of continuously varying the transfer matrix (see sec.
7.1) was evaluated with r = 100, M = I 6, Q = 10 * I 6, and with 10% measurement noise (fig. 78).
The sinusoidal bump in the identification error seen after step 500 indicated that the identified
transfer matrix was unchanging, thereby allowing the sinusoidal variation in the system transfer
matrix to show up in the identification error metric. The Kalman filter could not adapt the matrix
during this time because the vibration was so well controlled. As already mentioned for the local
model, the Kalman filter identification stopped as the change in control approached zero.

8.3 Closed-Loop Least-Mean-Squares Filter Identification: Global Model

Global model identification using the classic least-mean-squares (LMS) filter was initially
begun using K S = 0.3 * I 6, since that worked in both open-loop simulation and closed-loop
simulation using the local model. However, even for the case of no measurement, that gain
destabilized both the identification and control processes. Figure 79(a) shows that even K S = 0.05 *
I 6 produced unstable identification results. The result was oscillatory behavior of the controller.
Figure 79(b) shows that by reducing K S to 0.02 * I 6, the oscillatory nature of the controller was
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eliminated. Although the identification error still exceeded the boundaries of the plot after
simulation step 100, the stability of the controller indicated that the identification process was
working better than before. Figure 79(c) shows that by further reducing K S to 0.01 * I 6, the
performance of both identification and controller was much improved. Reducing K S below 0.01 *
I 6, however, did not improve identification or control, because the identification response time was
greatly slowed.

With K S = 0.01 * I 6, the introduction of 10% measurement noise did not noticeably affect the
identification or controller performance (fig. 80). Of course, the measurement noise did prevent the
vibration from being completely eliminated.

Figure 81 shows that slightly lower identification error could be obtained by introducing a
control probing signal of 0.1 magnitude; since it also degraded the vibration suppression only
slightly, however, its value was deemed to be of marginal importance.

Lastly, the identification error produced for the case of continuously varying the transfer matrix
was evaluated. With K S = 0.01, the identification error became very large after simulation step 400
(fig. 82(a)). The vibration control was also poor after that point. By reducing K S to 0.001 * I 6, the
vibration was better reduced (fig. 82(b)). Although the identification error was still high, the
transfer matrix was better identified for the purpose of control.

8.4 Closed-Loop Generalized Kalman Filter Identification: Global Model

With R = 100 and M  = I 6, the generalized Kalman filter was found to be insensitive to batch
size, cycle-averaging size, and control probing. Figure 83(a) shows the identification error and
controller performance using a batch size of 1 for the case of no measurement noise. This
performance was not greatly affected by the introduction of 10% measurement noise (fig. 83(b)).
Figures 84(a) and 84(b) show that increasing the multi-step batch size to 4 and 8, respectively, did
not change the identification performance noticeably from that found using a batch size of only 1
(fig. 84(b)). Figures 85(a) and 85(b) show that for a batch size of 4, using 4- and 8-cycle averaging
also had little effect on the identification performance. Lastly, the addition of 10% control probing
did not serve to lower the identification error (fig. 86). The behavior of the controller using the
identified transfer matrix and uncontrolled vibration feedback appeared to work very well in each
case.

Identification of a continuously varied transfer matrix of the type described in section 7.1 was
then simulated with R = 100 and M  = I6, batch size = 1, no probing, and no cycle averaging. The
resulting identification error and vibration control history are presented in figure 87. This shows
that the controller worked well except after the step changes in the transfer matrix. The vibration
was ultimately well controlled after each step, implying that the identification process was
working. However, convergence to zero identification error was not achieved.

8.5 Closed-Loop Generalized Least-Mean-Squares Filter Identification: Global Model

The generalized LMS filter was simulated with K S = 0.01 * I 6, since that value worked well
for the classic LMS filter. For the case of 10% measurement noise, figure 88 shows the identifi-
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cation error and vibration control for a multi-step batch size of 4 and 4-cycle averaging. The
identification performance did not change appreciably without cycle averaging. Reductions in K S

also had little effect. Figure 89 shows that the identification performance with batch size 4, 10%
probing, K S = 0.001 * I 6, and no cycle averaging was almost identical to that seen in figure 88.

Figure 90 shows the identification error found for the continuously varied transfer-matrix
identification test of section 7.1. As before, the measurement noise was 10%, the batch size was 4,
and K S was set to 0.001 * I 6. The resulting vibration control was fairly good, indicating that the
identification algorithm was working fairly well near the end of the simulation, even though the
identification index was somewhat high.

9. SUMMARY AND COMPARISON OF THE IDENTIFICATION METHODS

In the preceding sections, the open-loop and closed-loop simulation results were presented for
each of the five system-identification techniques. In this section, the best results for each method
 are compared so that relevant conclusions may be drawn. For simplicity, the matrix dimension of
the diagonal matrices is assumed since all simulations presented before were for the case of a
(6 x 6) transfer matrix. Hence, for example, M  = 0.1 is used rather than the more correct but longer
M  = 0.1 * I 6 notation.

9.1 Comparison of Open-Loop Identification

Figure 91 compares the overall best open-loop results obtained for each of the five
identification methods. The identification performances shown in these cases are roughly
equivalent. All plots show about the same level of identification error versus simulation step.

The weighted-least-squares-error (WLSE) approach using a batch size of 24 clearly produced
the lowest identification error (fig. 91(a)). Moreover, the identification error might have been
reduced slightly further using a batch size of 48. The fact that a batch size of 48 would have
required significantly more computation time than batch sizes of 12 or 24 is unimportant for the
open-loop identification case. It should also be remembered that absolutely no tuning was required
by this method.

The other identification methods, although providing similar identification accuracy (relative to
each other), required different amounts of tuning. The classic LMS filter required the least tuning,
having only a single tuning parameter, K S. The tuning was very easy because it was known, from
theory, that small enough values of K S would always produce stable and convergent identification.
The LMS filter was also computationally the fastest method. Although the Kalman filter was
almost as fast computationally, finding the correct M /r ratio was more difficult. The multi-step
methods were computationally more intensive, but by using multiple measurements, the multi-step
methods yielded somewhat lower steady-state identification errors. For the same reason however,
they showed slightly higher identification errors after the transient step change to the transfer
matrix at simulation step 100.
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For these reasons, the weighted-least-squares approach was judged to have the best open-loop
identification performance. Of the recursive identification methods, the classic LMS filter was
preferred for its computational efficiency and ease of tuning.

9.2 Comparison of Closed-Loop Local-Model Identification

Figure 92 presents the best identification performance obtained by each of the five methods in
attempting to identify the local transfer-matrix model before and after a change in the system
transfer matrix after simulation step 100. For comparison purposes, the identification error for no
identification is presented in figure 92(a). Figure 92(b) shows the weighted (α  = 1, γ = 1) least-
squares-error method using a batch size of 24 and zero vibration defined as being 0.20 of the
baseline vibration. Figure 92(c) presents the identification error obtained using the classic Kalman
filter with r = 100, M  = 1, Q = 10, and with probing set at 10%. Figure 92(d) shows the LMS filter
identification with K S = 0.1 and probing of 10%. Figure 92(e) shows results for the generalized
Kalman filter with R = 1, M = 10, a batch size 4, a cycle-averaging size of 8, and 10% probing.
Figure 92(f) shows the results for the generalized LMS filter with K S = 0.1, a batch size of 4, and a
cycle-averaging size of 4.

In comparing the figures, it is seen that none of the methods succeed in totally eliminating the
identification error. The weighted-least-squares method showed the most identification error after
the transfer-matrix step change at simulation step 100 and also had the highest steady-state error
(fig. 92(b)). Figures 92(c) and 92(d) show that the classic Kalman and LMS filter algorithms
reduced the identification error slowly as the simulation progressed, with the LMS filter being
slightly better. The generalized Kalman filter did the best job of reducing the identification error
(fig. 92(e)) because it continued to reduce the error as the simulation progressed. All the methods
used probing to assist the identification process. Without probing, the generalized methods reduced
the identification error, but very slowly.

The corresponding closed-loop vibration control records are shown in figure 93. As expected, it
is seen that the weighted-least-squares method, which showed the largest transient identification
error at simulation step 100, also displayed the worst vibration control (fig. 93(b)). Remarkably, as
the simulation progressed, it attained virtually the same level of vibration control as the other
methods. Correlating the vibration reduction to the identification-error reduction in figure 92, it is
seen that the identification error was not eliminated by any of the recursive methods, because the
optimal control vector was found before the transfer matrix was fully identified. That is, using only
a partially identified matrix, the deterministic control law was able to step to the optimum in a few
steps. Once found, the control did not change, and the identification process virtually stopped. The
generalized LMS and Kalman multi-step methods produced better vibration control during the
transient change introduced at simulation step 100.

Therefore, it appears that for closed-loop identification using the local model, that the best
methods were the LMS filter and the generalized Kalman filter. The LMS filter was
computationally efficient and used a single tuning parameter, whereas the generalized Kalman
filter offered somewhat improved identification accuracy. However, the difference in identification
performance appeared to be relatively unimportant in terms of vibration control.
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Figure 94 compares the local model, closed-loop identification error obtained for the case of
continuous variation of the transfer matrix (see sec. 7.1). The baseline identification error without
on-line identification is shown in figure 94(a). The performance of the least-squares method is
shown in figure 94(b); of the Kalman filter in figure 94(c); of the LMS filter in figure 94(d); of the
generalized Kalman filter in figure 94(e); and of the generalized LMS filter in figure 94(f). Each of
the methods was tuned as before, with the exception of the generalized LMS method, which was
tuned having K S = 0.1, a batch size of 8, and a cycle-averaging size of 4. The least-squares method
clearly produced the largest identification errors. The identification errors of the remaining
recursive methods were similar, though again the generalized Kalman filter was the best (fig.
94(e)). The generalized LMS filter identification error was higher near simulation step 1000.

Figure 95 shows the corresponding closed-loop vibration control for the same identification
cases shown in figure 94. The vibration control was found to be similar for each of the methods
except for the weighted-least-squares method (fig. 95(b)). The vibration control using this
identification method was better than that of any of the recursive methods. The reason for this
gain, however, might not be the identification performance per se; rather, the gain might be a result
of the artificial bypassing of the identification process for vibration levels below the set threshold
vibration limit. All of the recursive methods produced good vibration control near the middle of
the simulation, but they became more erratic as the changes in the plant-matrix model were made
larger near the end of the simulation. The multi-step methods appeared to offer no advantage over
their more computationally efficient, single-step counterparts.

9.3 Comparison of Closed-Loop Global-Model Identification

The best global-model identification results that were achieved with each of the five methods
are shown in figure 96 for the case of 10% measurement noise and a 50% change in the system
transfer matrix at simulation step 100. Figure 96(a) shows the identification error resulting after
step 100 without identification. Figure 96(b) shows the weighted-least-squares identification error
obtained using a batch size of 24 and with “zero-vibration” defined as 0.20 of the nominal value.
Figure 96(c) shows the identification error obtained using the classic Kalman filter with r = 100, M
= 1, Q = 10, and with 10% probing of the control vector. Figure 96(d) shows the classic LMS filter
identification results with KS = 0.01 and 10% probing. Figure 96(e) shows the identification error
of the generalized Kalman filter with R = 100, M = 10, a batch size of 4, a cycle-averaging size of
8, and with 10% probing. Finally figure 96(f) shows the identification error for the generalized
LMS filter with KS = 0.01 and with a multi-step batch size of only 1 and no cycle averaging.

Comparing the plots shown in figure 96 with those shown in figure 92, it is seen that with the
global model, each of the identification methods produced lower identification errors than using
the local model. Each method appeared to produce the same identification accuracy. Moreover,
figure 97 shows that the vibration control was equally similar for each of the methods. Therefore,
the classic LMS algorithm was in some respects the best algorithm to use because it required the
fewest tuning parameters and was computationally the fastest method.

Figure 98 compares the identification error obtained with each of the five methods for the case
of the continuously varied global-model transfer matrix (see sec. 7.1). Figure 98(a) shows the
baseline identification error without on-line identification. The identification error of the weighted-
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least-squares method is shown in figure 98(b); of the classic Kalman filter in figure 98(c); of the
classic LMS filter in figure 98(d); of the generalized Kalman filter in figure 98(e); and of the
generalized LMS filter in figure 98(f). The filters were all tuned as described above, except that the
classic and generalized LMS filter identification gains KS were reduced to 0.001 to improve their
identification performance.

The plots in figure 98 (compared with those in fig. 94) show that the weighted-least-squares
and the classic LMS filter methods produced higher identification errors using the global model
(figs. 98(b), 98(d)) than when using the local model. The identification performance of the classic
and generalized Kalman filters (figs. 98(c), 98(e)) were virtually identical. Since the generalized
Kalman filter was implemented using few tuning parameters, it was judged superior to the classic
version.

Figure 99 shows results similar to those for the local model; that is, the best vibration control,
by far, was obtained using the weighted-least-squares-error method (fig. 99(b)). The vibration
suppression obtained using this identification method was nearly perfect, displaying only a few
small glitches of vibration. All of the recursive versions displayed erratic vibration control.
Although vibration control was sometimes very good, the recursive methods generally failed to
control vibration after the discontinuities in the transfer matrix were introduced using the global
model. For these methods, vibration control using the local model was clearly better, especially
during the first half of the simulation run when the system transfer matrix was varied slowly.

The superior vibration control (fig. 99(b)) using the weighted-least-squares method in moving
block format with a batch size of 24 was a surprise, considering the apparently high identification
error shown in figure 98(b). Although the transfer matrix was computed to be more in error
according to the absolute value of each element in the identified transfer matrix compared to its
true value, it obviously worked well with the deterministic control law. Perhaps the memory of 24
measurements allowed the least-squares method to find a matrix that worked well with the
deterministic control law. This identified matrix, even though in error relative to the true transfer
matrix, may have had the row elements identified well in proportion to each other, thereby
allowing the deterministic controller to step toward the optimum control input without being fully
identified. Had the identification error metric been designed with the transfer-matrix element ratios
in mind, the good vibration control results might have been expected.

9.4 Conclusions

Two general conclusions can be drawn from this system identification study. First, alternatives
to the classic Kalman filter identification method exist that offer greater ease of implementation or
faster computation or both. The accuracy of these methods, however, is not necessarily better than
that of the classic Kalman filter method, given correct tuning information. Second, it is noteworthy
that none of the identification methods simulated herein were found to be capable of identification
convergence as the vibration level became reduced to the same level as the measurement noise
including the classic Kalman filter method. This advocates the need for continued system
identification research, since it is not an uncommon event that once good vibration control is
achieved, the signal-to-noise ratio becomes high, thereby creating an environment that is very
unamenable to system identification.



50

The principal specific findings of this investigation are noted below.

1. The only reliable method of transfer-matrix identification was open-loop excitation of the
plant dynamics. In open-loop, all identification methods produced similar identification accuracy
and stability. Measurement noise raised the amount of steady-state identification error, but did not
prevent identification convergence toward the true estimate, because the open-loop excitation
commands were always large enough to produce a sufficiently high signal-to-noise ratio for
identification purposes. As was shown in figure 91, the multi-step Kalman and LMS filters may
have yielded a slight improvement in identification accuracy. However, because these methods
also required some tuning to work correctly, the method of weighted-least-squares (with identity
matrix weighting) is recommended for open-loop identification. A batch size of 24–48
measurements for identification of the (6 x 6) transfer matrix is recommended to reduce the effects
of measurement noise. Transfer matrices having more columns may require more measurements.
As a general rule, the number of input-output pairs acquired should be about 3 times the column
dimension of the transfer matrix. The lower computational speed of the least-squares method is
irrelevant since the computations done for open-loop identification do not need to be done under a
time constraint.

2. In closed-loop operation, in which the identified transfer matrix was used in a deterministic
control law to reduce the measured vibration (or measurement vector), suppression of the vibration
was clearly no indicator of correct transfer-matrix identification. Each of the identification
methods was found to be capable of adjusting the identified transfer-matrix elements in such a way
that the deterministic controller could find the optimum vibration control settings long before the
transfer matrix was correctly identified.

3. Closed-loop identification was much more difficult than open-loop identification because the
control commands were chosen to control the helicopter vibration, rather than to provide
excitation. As the vibration became well reduced in closed-loop operation, the signal-to-noise ratio
decreased, because the measurement noise became an increasingly larger portion of the
measurement signal. As the optimum control solution was achieved, the changes to the identified
transfer matrix became very small, because the recursive algorithms formulated the changes
proportionally to both the change in control and to the difference between the measured and
estimated vibration (i.e., z - T_). As one or both of these approached zero as the vibration was
controlled, the identification process was effectively shut down. In addition, since the changes to
the control input were very small, they appeared less correlated to the changes in the measured
vibration; a result of the random measurement noise. This made the updates to the identified
matrix also take on a largely random nature. For these reasons, convergence to the correct transfer
matrix was very slow once good vibration control was achieved. This resulted in the identification
error taking on a constant value, even though convergence to the correct transfer matrix was far
from completed.

4. The addition of perturbation or probing signals to the control vector increased the rate of
closed-loop transfer-matrix identification and also prevented the identification algorithms from
producing large constant error values in steady-state operation. However, the amount of steady-
state vibration remaining was also increased, thereby degrading controller performance. For this
reason, the technique of probing seems impractical for real vibration-control applications.
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5. In closed-loop operation, the weighted-least-squares method always produced the highest
identification errors, but the best vibration control. As the controller reached a steady-state solution
for optimal control, the control-covariance matrix became singular, thereby producing poor
identification in closed-loop. Adding a perturbation signal to the control vector did not greatly
improve the situation. However, not performing the identification (and moving-block sequencing)
for vibration below 0.20 of the baseline vibration level offered surprisingly good vibration control
(see figs. 95, 99). Although not evaluated, it is possible that the recursive methods might have also
produced better vibration control with the application of this logic. Therefore, using the weighted-
least-squares-error method in moving-block format was determined to be very feasible. The
selection of the correct threshold vibration level represents selection of a tuning parameter no more
difficult to select than those used by the recursive identification methods.

6. The most computationally efficient and least complex recursive algorithm was the LMS
filter method: its speed and simplicity highly recommend this identification algorithm as the
method of choice since the more complicated recursive methods (i.e., Kalman filter, multi-step)
offered only slightly improved identification accuracy.

7. The Kalman filter, although sometimes observed to produce very good identification results,
was difficult to tune. The values chosen for r and M , as expected from theory, were found to
govern the trade-off between responsive identification and superior noise rejection. It was also
noted that over a wide range of r and M  values, the ratio of r/M  was generally the factor which
most influenced the system identification convergence behavior. In addition, whereas a non-zero Q
value was clearly required for good identification, almost any value of Q from 0.01 to 100
produced the same identification performance. However, tuning the filter was not a straightforward
exercise. For example, the tuning values that were found to be optimal for open-loop identification
(r = 1,  M = 10, Q = 10), produced divergent identification in closed-loop operation. Although the
instability was eliminated by re-tuning the filter (r = 100, M  = 1, Q = 10), this task would likely
prove to be difficult in real-world applications where strict simulation conditions cannot be so
easily maintained.

8. By using multiple measurements, the multi-step methods yielded somewhat lower steady-
state identification errors; yet, for the same reason, they gave slightly higher identification errors
after the transient step change to the transfer matrix. The generalized Kalman filter differed from
the classic Kalman filter not only because it allowed multiple measurements to be used in the
identification process, but also because its formulation did not recursively propagate the process-
noise covariance matrix. Although the generalized Kalman filter provided somewhat lower
identification error relative to the generalized LMS filter and the other recursive methods, the
difference was found to be unimportant in terms of closed-loop vibration-control performance. In
view of this, the classic LMS filter might be preferred for its computational efficiency, whereas the
weighted-least-squares method in moving-block format might be preferred for its superior
vibration control.

9. As was found using the weighted-least-squares method in moving-block format, in closed-
loop operation large identification errors in the transfer matrix did not necessarily preclude
excellent vibration control. The reason was, apparently, that the identified matrix, even though in
error compared to the true transfer matrix, may have had the row elements identified well in
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proportion to each other, thereby allowing the deterministic controller to step toward the optimum
control input without being fully identified.

10. Taken overall, both local and global models investigated by this study produced equivalent
identification accuracy and closed-loop vibration control performance. Neither model was
preferred over the other.
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